• Matter and Radiation at Extremes
  • Vol. 4, Issue 5, 055401 (2019)
Hong Sio1、a), Chikang Li1, Cody E. Parker1, Brandon Lahmann1, Ari Le2, Stefano Atzeni3, and Richard D. Petrasso1
Author Affiliations
  • 1Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  • 3Dipartimento SBAI, Università degli Studi di Roma “La Sapienza,” Via Antonio Scarpa 14, 00161, Roma, Italy
  • show less
    DOI: 10.1063/1.5090783 Cite this Article
    Hong Sio, Chikang Li, Cody E. Parker, Brandon Lahmann, Ari Le, Stefano Atzeni, Richard D. Petrasso. Fuel-ion diffusion in shock-driven inertial confinement fusion implosions[J]. Matter and Radiation at Extremes, 2019, 4(5): 055401 Copy Citation Text show less
    References

    [1] P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, J. D. Lindl et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).

    [2] J. Edwards, O. Landen, J. Lindl, E. Moses. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [3] P. Amendt, O. L. Landen, C. K. Li, R. D. Petrasso, H. F. Robey. Plasma barodiffusion in inertial-confinement-fusion implosions: Application to observed yield anomalies in thermonuclear fuel mixtures. Phys. Rev. Lett., 105, 115005(2010).

    [4] G. Kagan, X. Tang. Electro-diffusion in a plasma with two ion species. Phys. Plasmas, 19, 082709(2012).

    [5] N. M. Hoffman, K. Molvig, H. G. Rinderknecht, M. J. Rosenberg, G. B. Zimmerman et al. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions. Phys. Plasmas, 22, 052707(2015).

    [6] P. A. Amendt, C. Bellei, D. T. Casey, M. G. Haines, S. C. Wilks et al. Species separation in inertial confinement fusion fuels. Phys. Plasmas, 20, 012701(2013).

    [7] S. H. Batha, H. W. Herrmann, T. J. T. Kwan, A. Le, M. J. Schmitt. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment. Phys. Plasmas, 23, 102705(2016).

    [8] P. A. Amendt, S. Atzeni, N. M. Hoffman, H. G. Rinderknecht, M. J. Rosenberg et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions. Phys. Rev. Lett., 112, 185001(2014).

    [9] N. M. Hoffman, G. Kagan, C. K. Li, H. G. Rinderknecht, M. J. Rosenberg et al. Ion thermal decoupling and species separation in shock-driven implosions. Phys. Rev. Lett., 114, 025001(2015).

    [10] C. K. Li, H. G. Rinderknecht, M. J. Rosenberg, H. Sio, A. B. Zylstra et al. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions. Phys. Rev. Lett., 112, 135001(2014).

    [11] D. T. Casey, J. A. Frenje, M. Gatu Johnson, M. J.-E. Manuel, H. G. Rinderknecht et al. Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions. Phys. Rev. Lett., 108, 075002(2012).

    [12] J. H. Cooley, H. W. Herrmann, J. R. Langenbrunner, J. M. Mack, D. C. Wilson et al. Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition. Phys. Plasmas, 16, 056312(2009).

    [13] J. A. Frenje, C. K. Li, M. Manuel, J. R. Rygg, F. H. Séguin et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. Phys. Rev. Lett., 100, 225001(2008).

    [14] F. Beg, R. Hua, C. McGuffey, Y. Ping, H. Sio et al. A broadband proton backlighting platform to probe shock propagation in low-density systems. Rev. Sci. Instrum., 88, 013503(2017).

    [15] S. Atzeni, F. Califanob, F. Cattanib, F. Cornoltib, A. Schiavia et al. Fluid and kinetic simulation of inertial confinement fusion plasmas. Comput. Phys. Commun., 169, 153(2005).

    [16] R. E. Clark, T. C. Genoni, T. P. Hughes, D. V. Rose, D. R. Welch. Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation. Comput. Phys. Commun., 164, 183(2004).

    [17] J. H. Nuckolls, M. D. Rosen. Exploding pusher performance—A theoretical model. Phys. Fluids, 22, 1393(1979).

    [18] T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer et al. Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495(1997).

    [19] M. J.-E. Manuel, M. Rosenberg, F. H. Seguin, N. Sinenian, A. Zylstra et al. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science. Rev. Sci. Instrum., 83, 10D908(2012).

    [20] J. A. Frenje, D. G. Hicks, S. Kurebayashi, C. K. Li, F. H. Séguin et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas. Rev. Sci. Instrum., 74, 975(2003).

    [21] C. J. Forrest, V. Yu. Glebov, K. L. Marshall, M. Romanofsky, T. C. Sangster et al. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA. Rev. Sci. Instrum., 85, 11E102(2014).

    [22] R. Boni, F. Ehrne, C. J. Forrest, V. Yu. Glebov, C. Stoeckl et al. Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA. Rev. Sci. Instrum., 87, 053501(2016).

    [23] J. A. Frenje, J. Katz, H. Sio, C. Stoeckl, D. Weiner et al. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited). Rev. Sci. Instrum., 87, 11D701(2016).

    Hong Sio, Chikang Li, Cody E. Parker, Brandon Lahmann, Ari Le, Stefano Atzeni, Richard D. Petrasso. Fuel-ion diffusion in shock-driven inertial confinement fusion implosions[J]. Matter and Radiation at Extremes, 2019, 4(5): 055401
    Download Citation