• High Power Laser and Particle Beams
  • Vol. 35, Issue 1, 012010 (2023)
Zheng Gong
Author Affiliations
  • Max Planck Institute for Nuclear Physics, Heidelberg 69117, Germany
  • show less
    DOI: 10.11884/HPLPB202335.220114 Cite this Article
    Zheng Gong. Research progress on radiative spin polarized plasma[J]. High Power Laser and Particle Beams, 2023, 35(1): 012010 Copy Citation Text show less

    Abstract

    Spin-polarized plasma induced by the radiative spin flips in ultrarelativistic laser-matter interaction attracts great attention. Spin-polarized electron beams are broadly utilized in probing the structure of solid-state materials, exploring nucleon structure, and facilitating the analyses of the electroweak interaction. Electron spin, an intrinsic property of the electrons, could provide a new degree of freedom of information in characterizing plasma collective behaviors. In this manuscript, we review the mechanism of the production of radiative spin-polarized plasma and discuss its potential application in retrieving the transient ultrarelativistic plasmas.
    $ \left\{ \begin{array}{l} \dfrac{\mathrm{d}{\boldsymbol{s}}}{\mathrm{d}t}={\boldsymbol{s}}\times {\boldsymbol{\varOmega }} \\ {\boldsymbol{\varOmega }}=\dfrac{e}{2{m}_{\mathrm{e}}}\Bigg\{g\left(\dfrac{{\boldsymbol{B}}}{\gamma }-\dfrac{1}{\gamma +1}\dfrac{{\boldsymbol{v}}}{{c}^{2}}\times {\boldsymbol{E}}\right)-\left(g-2\right)\dfrac{\gamma }{\gamma +1}\Bigg[\dfrac{{\boldsymbol{v}}}{{c}^{2}}\times ({\boldsymbol{E}}+{\boldsymbol{v}}\times {\boldsymbol{B}})\Bigg]\Bigg\} \end{array} \right. $(1)

    View in Article

    $ \dfrac{{{\boldsymbol{s}}}^{n+1}-{{\boldsymbol{s}}}^{n}}{\Delta t}=\dfrac{{{\boldsymbol{s}}}^{n+1}+{{\boldsymbol{s}}}^{n}}{2}\times {\boldsymbol{\varOmega }}^{n+\tfrac{1}{2}} $(2)

    View in Article

    $ {{\boldsymbol{s}}}^{n+1}={{\boldsymbol{s}}}^{n}+{\boldsymbol{s}}'\times \dfrac{2{\boldsymbol{t}}}{1+{\left|{\boldsymbol{t}}\right|}^{2}} $(3)

    View in Article

    $ \dfrac{{\mathrm{d}}^{2}{N}_{\mathrm{p}\mathrm{h}}}{\mathrm{d}{\chi }_{\mathrm{p}\mathrm{h}}{\rm{d}}t}=\dfrac{\sqrt{3}{\alpha }_{\mathrm{f}}{m}_{{\rm{e}}}{c}^{2}}{h}\dfrac{{\chi }_{{\rm{e}}}}{{\gamma }_{{\rm{e}}}}\dfrac{F\left({\chi }_{\mathrm{e}}{\chi }_{\mathrm{p}\mathrm{h}}\right)}{{\chi }_{\mathrm{p}\mathrm{h}}} $(4)

    View in Article

    $ \dfrac{F\left({\chi }_{\mathrm{e}},{\chi }_{\mathrm{p}\mathrm{h}}\right)}{{\chi }_{\mathrm{p}\mathrm{h}}}=\dfrac{2}{3{\chi }_{{\rm{e}}}^{2}}\Bigg[\left(2+\dfrac{3}{2}{\chi }_{\mathrm{p}\mathrm{h}}y\right){K}_{\tfrac{2}{3}}\left(y\right)-{\tilde{K}}_{\tfrac{1}{3}}\left(y\right)-\left({{\boldsymbol{s}}}_{{\rm{i}}}\cdot {\hat{e}}_{2}\right)\dfrac{{\chi }_{\mathrm{p}\mathrm{h}}}{{\chi }_{\mathrm{e}}}{K}_{\tfrac{1}{3}}\left(y\right)+{{\boldsymbol{s}}}_{{\rm{f}}}\cdot {\boldsymbol{K}}\Bigg] $(5)

    View in Article

    $ {\boldsymbol{K}}=-\left[{\tilde{K}}_{\tfrac{1}{3}}\left(y\right)-2{K}_{\tfrac{2}{3}}\left(y\right)\right]{{\boldsymbol{s}}}_{{\rm{i}}}-\dfrac{3}{2}{\chi }_{\mathrm{e}}y{K}_{\tfrac{1}{3}}\left(y\right){\hat{e}}_{2}-\dfrac{3}{2}{\chi }_{\mathrm{p}\mathrm{h}}y\left[{{\tilde{K}}_{\tfrac{1}{3}}\left(y\right)-{K}_{\tfrac{2}{3}}\left(y\right)}\right]({{\boldsymbol{s}}}_{{\rm{i}}}\cdot {\hat{e}}_{v}){\hat{e}}_{v} $(6)

    View in Article

    $ {P}_{2}=\dfrac{{\displaystyle\int }_{0}^{{\chi }_{\mathrm{p}\mathrm{h}}^{f}}\dfrac{F\left({\chi }_{\mathrm{e}},{\chi }_{\mathrm{p}\mathrm{h}}\right)}{{\chi }_{\mathrm{p}\mathrm{h}}}{\rm{d}}{\chi }_{\mathrm{p}\mathrm{h}}}{{\displaystyle\int }_{0}^{{\chi }_{\mathrm{e}}}\dfrac{F\left({\chi }_{\mathrm{e}},{\chi }_{\mathrm{p}\mathrm{h}}\right)}{{\chi }_{\mathrm{p}\mathrm{h}}}{\rm{d}}{\chi }_{\mathrm{p}\mathrm{h}}} $(7)

    View in Article

    Zheng Gong. Research progress on radiative spin polarized plasma[J]. High Power Laser and Particle Beams, 2023, 35(1): 012010
    Download Citation