• Chinese Journal of Lasers
  • Vol. 36, Issue 7, 1635 (2009)
Zheng Yaohui*, Li Fengqin, Zhang Kuanshou, and Peng Kunchi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    Zheng Yaohui, Li Fengqin, Zhang Kuanshou, Peng Kunchi. Progress of All-Solid-State Single-Frequency Lasers[J]. Chinese Journal of Lasers, 2009, 36(7): 1635 Copy Citation Text show less
    References

    [1] V. Evtuhov, A. E. Siegman. A. “Twisted-Mode” technique for obtaining axially uniform energy density in a laser cavity[J]. Appl. Opt., 1965, 4(1): 142~143

    [2] Z. Lin, C. Gao, M. Gao et al.. Diode-pumped single-frequency microchip CTH∶YAG lasers using different pump spot diameters[J]. Appl. Phys. B, 2009, 94(1): 81~84

    [3] J. J. Zayhowski, A. Mooradian. Single-frequency microchip Nd lasers[J]. Opt. Lett., 1989, 14(1): 24~26

    [4] T. Baer. Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd∶YAG lasers[J]. J. Opt. Soc. Am. B, 1986, 3: 1175~1180

    [5] Xue Qinghua, Zheng Quan, Ye Ziqing et al.. Analysis of eigenstates on LD-pumped Nd∶YVO4/KTP intracavity-doubled green laser[J]. Chinese J. Lasers, 2003, 30(10): 877~880

    [6] Wang Junying, Zheng Quan, Xue Qinghua et al.. 1.12 W single-frequency green laser adopting birefringent filter technique[J]. Acta Photonica Sinica, 2005, 34(3): 321~324

    [7] Wang Haibo, Ma Yan, Zhai Zehui et al.. 1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser[J]. Chinese J. Lasers, 2002, 29(2): 119~122

    [8] Y. F. Chen, T. M. Huang, C. L. Wang et al.. Theoretical and experimental studies of single-mode operation in diode pumped Nd∶YVO4/KTP green laser: influence of KTP length[J]. Opt. Commun., 1998, 152: 319~322

    [9] G. T. Maker, P. A. Malcolm, A. I. Ferguson. Single-frequency diode-pumped Nd∶YAG ring laser with no intracavity elements[J]. Opt. Lett., 1993, 18(21): 1813~1815

    [10] Zhang Jing, Zhang Kuanshou, Wang Runlin et al.. All-solid-state Nd∶YVO4 ring laser of single-frequency operation[J]. Chinese J. Lasers, 2000, A27(8): 694~696

    [11] K. I. Martin, W. A. Clarkson, D. C. Hanna. 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd∶YAG ring laser[J]. Opt. Lett., 1996, 21(12): 875~877

    [12] Y. H. Zheng, H. D. Lu, F. Q. Li et al.. Four watt long-term stable intracavity frequency-doubling Nd∶YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode[J]. Appl. Opt., 2007, 46(22): 5336~5339

    [13] Zheng Yaohui, Lu Huadong, Li Fengqin et al.. All-solid-state high-efficiency high-power Nd∶YVO4/KTP laser of single-frequency operation[J]. Chinese J. Lasers, 2007, 34(6): 739~742

    [14] W. Koechner. Solid-State Laser Engineering[M]. Sun Wen et al. transl., Beijing: Science Press, 2002. 366~367

    [15] R. Weber, B. Neuenschwander, M. M. Donald et al.. Cooling schemes for longitudinally diode laser-pumped Nd∶YAG rods[J]. IEEE J. Quantum Electron., 1998, 34(6): 1046~1053

    [16] P. J. Hardman, W. A. Clarkson, D. C. Hanna. High-power diode-bar-pumped intracavity-frequency-doubled Nd∶YLF laser[J]. Opt. Commun., 1998, 156(1~3): 49~52

    [17] Z. Zhuo, T. Li, X. M. Li et al.. Investigation of Nd∶YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser[J]. Opt. Commun., 2007, 274(1): 176~181

    [18] X. Y. Peng, L. Xu, A. Asundi. Power scaling of diode-pumped Nd∶YVO4 lasers[J]. IEEE J. Quantum Electron., 2002, 38(9): 1291~1299

    [19] E. Cheng, D. R. Dudley, W. L. Nighan et al.. Laser with low doped gain medium[P]. US. Patent, Patent No.. US6185235. 2001

    [20] L. McDonagh, R. Wallenstein. High-efficiency 60 W TEM00 Nd∶YVO4 oscillator pumped at 888 nm[J]. Opt. Lett., 2006, 31(22): 3297~3299

    [21] L. McDonagh, R. Wallenstein. Low-noise 62 W CW intracavity-doubled TEM00 Nd∶YVO4 green laser pumped at 888 nm[J]. Opt. Lett., 2007, 32(7): 802~804

    [22] http:∥www.bjlaser.com/lasers/ELS/ELS%20products.doc

    [23] J. Mende, E. Schmid, J. Speiser. Thin disk laser: Power scaling to the kW regime in fundamental mode operation[C]. SPIE, 2009, 7193: 71931V

    [24] X. J. Guo, W. Hou, H. B. Peng et al.. 4.44 W of CW 515 nm green light generated by intracavity doubling Yb∶YAG thin disk laser with LBO[J]. Opt. Commun., 2006, 267(2): 451~454

    [25] A. Baum, D. Grebner, W. Paa et al.. Axial mode tuning of a single frequency Yb∶YAG thin disk laser[J]. Appl. Phys. B, 2005, 81(8):1091~1096

    [26] D. Kouznetsov, J. F. Bisson, J. Dong et al.. Surface loss limit of the power scaling of a thin-disk laser[J]. J. Opt. Soc. Am. B, 2006, 23(6): 1074~1082

    [27] http:∥www.coherent.com.cn/

    [28] S. Greenstein, M. Rosenbluh. The influence of nonlinear spectral bandwidth on single longitudinal mode intracavity second harmonic generation[J]. Opt. Commun., 2005, 248(1~3): 241~248

    [29] P. A. Schulz, S. R. Henion. Frequency-modulated Nd∶YAG laser[J]. Opt. Lett., 1991, 16(8): 578~580

    [30] W. R. Trutna, Jr, D. K. Donald. Two-piece, piezoelectrically tuned, single-mode Nd∶YAG ring laser[J]. Opt. Lett., 1990, 15(7): 369~371

    [31] T. J. Kane, E. A. P. Cheng. Fast frequency tuning and phase locking of diode-pumped Nd∶YAG ring lasers[J]. Opt. Lett., 1988, 13(11): 970~972

    [32] A. Owyoung, P. Esherick. Stress-induced tuning of a diode-laser-excited monolithic Nd∶YAG laser[J]. Opt. Lett., 1987, 12(12): 999~1001

    [33] M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin et al.. Tunable single-frequency diode-pumped Nd∶YAG ring laser at 1064 nm/532 nm for optical frequency standard applications[J]. Opt. Commun., 2002, 203(3~6): 359~362

    [34] M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin et al.. Single-frequency intracavity doubled Yb∶YAG ring laser[J]. Opt. Commun., 2005, 256(4~6): 347~351

    [35] J. Harrison, A. Finch, J. H. Flint et al.. Broad-band rapid tuning of a single-frequency diode-pumped neodymium laser[J]. IEEE J. Quantum Electron., 1992, 28(4): 1123~1130

    [36] Zhang Jing, Ma Hongliang, Wang Runlin et al.. All-solid-state single-frequency ring Nd∶YVO4 tunable lasers[J]. Chinese J. Lasers, 2002, A29(7): 577~579

    [37] Y. H. Zheng, H. D. Lu, Y. M. Li et al.. Broadband and rapid tuning of an all-solid-state single-frequency Nd∶YVO4 laser[J]. Appl. Phys. B, 2008, 90(3~4): 485~488

    [38] Wang Junmin, Liang Xiaoyan, Li Li Ruining et al.. CW frequency-stabilized ring Ti∶sapphire laser with four mirrors[J]. Chinese J. Lasers, 1994, A21(10): 773~777

    [39] J. Harrison, A. Finch, D. M. Rines et al.. Low-threshold, cw, all-solid-state Ti∶Al2O3 laser[J]. Opt. Lett., 1991, 16(8): 581~583

    [40] W. Q. Xi, J. Y. Zhao, K. S. Zhang. A high-power continuous-wave laser-diode end-pumped Nd∶YVO4 laser of single-frequency operation[J]. Chin. Phys. Lett., 2005, 22(5): 1144~1147

    [41] X. Y. Li, Q. Pan, J. T. Jing et al.. LD pumped intracavity frequency-doubled and frequency-stabilized Nd∶YAP/KTP laser with 1.1 W output at 540 nm[J]. Opt. Commun., 2002, 201(1~3): 165~171

    [42] Yan Ying, Luo Yu, Pan Qing et al.. Watt level CW frequency-stabilized Nd∶YAP/KTP laser with dual wavelength outputs[J]. Chinese J. Lasers, 2004, 31(5): 513~517

    [43] Chang Dongxia, Liu Xia, Wang Yu et al.. All-solid-state CW intracavity frequency-doubled and frequency-stabilized Nd∶YVO4/LBO red laser[J]. Chinese J. Lasers, 2008, 35(3): 323~327

    [44] J. Zhang, C. D. Xie, K. C. Peng. Electronic feedback control of the intensity noise of a single-frequency intracavity-doubled laser[J]. J. Opt. Soc. Am. B, 2002, 19(8): 1910~1916

    [45] Zhang Jing, Zhang Kuashou, Chen Yanli et al.. Intensity noise properties of LD pumpedsingle-frequency ring lasers[J]. Acta Optica Sinica, 2000, 20(10): 1311~1316

    [46] J. Zhang, H. Chang, X. J. Jia et al.. Suppression of the intensity noise of a laser-diode-pumped single-frequency ring Nd∶YVO4-KTP green laser by optoelectronic feedback[J]. Opt. Lett., 2001, 26(10): 695~697

    [47] Chen Yanli, Zhang Jing, Li Yongmin et al.. Reduction of intensity noise of single-frequency Nd∶YVO4 laser using mode cleaner[J]. Chinese J. Lasers, 2001, A28(3): 197~200

    [48] Zhao Fagang, Pan Qing, Peng Kunchi. Improving frequency stability of laser by means of temperature-controlled fabry-perot cavity[J]. Chin. Opt. Lett., 2004, 2(6): 334~336

    [49] Yan Shubin, Wang Yanhua, Liu Tao et al.. Modulation-free laser frequency locking by AOM shifted cesium sub-Doppler spectra[J]. Acta Optica Sinica, 2004, 24(10): 1335~1338

    [50] C. Salomon, D. Hils, J. L. Hall. Laser stabilization at the millihertz level[J]. J. Opt. Soc. Am. B, 1988, 5(8): 1576~1587

    [51] B. C. Young, F. C. Cruz, J. C. Bergquist et al.. Visible lasers with subhertz linewidths[J]. Phys. Rev. Lett., 1999, 82(19): 3799~3782

    [52] J. Alnis, A. Matveev, N. Kolachevsky et al.. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities[J]. Phys. Rev. A, 2008, 77(5): 053809

    [53] Y. Y. Jiang, Z. Y. Bi, L. S. Ma et al.. Two-Hertz-linewidth Nd∶YAG lasers at 1064 nm stabilized to vertically mounted untra-stable cavities[J]. Chin. Phys. B, 2008, 17(6): 2152~2155

    CLP Journals

    [1] Xue Junwen, Deng Kaiyong, Fang Yujie, Pei Xuedan, Su Binghua. Analysis of Frequency Doubling Characteristics of Periodically Poled Crystal[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71901

    [2] Deng Qinghua, Ding Lei, He Shaobo, Tang Jun, Xie Xudong, Lu Zhenhua, Dong Yifang. Evaluating Specifications on Coupled Pump Distribution in LDA Side-Pumped Rod Gain Medium[J]. Chinese Journal of Lasers, 2010, 37(5): 1176

    [3] Guo Yong, Qiu Qi, Wang Yunxiang, Wang Zhiyong, Su Jun, Shi Shuangjin, Yu Zhenfang. Research on Stability of Fabry-Perot Cavity Based on PDH[J]. Chinese Journal of Lasers, 2016, 43(4): 402003

    [4] Peng Kunchi, Jia Xiaojun, Su Xiaolong, Xie Changde. Optical Manipulations of Quantum States with Continuous Variables[J]. Acta Optica Sinica, 2011, 31(9): 900107

    [5] Jin Xiaoli, Su Jing, Jin Pixian, Wang Wenzhe, Peng Kunchi. Study on A High-Precision Digital Temperature-Control System for All-Solid-State Single-Frequency Green Laser[J]. Chinese Journal of Lasers, 2015, 42(9): 902010

    [6] Zhao Zhigang, Cui Lingling, Tong Lixin, Gao Qingsong, Tang Chun, Liu Chong, Chen Jun. All-Solid-State High Pulse Repetition Rate High Pulse Energy Single-Longitudinal-Mode MOPA Laser System with Solid-State Phase Conjugating Mirror[J]. Chinese Journal of Lasers, 2010, 37(12): 2949

    [7] Lu Huadong, Su Jing, Peng Kunchi. Study on Intracavity Losses and Output Coupler Transmission of All-Solid-State Tunable Ti:Sapphire Laser[J]. Chinese Journal of Lasers, 2010, 37(9): 2328

    [8] Xing Junhong, Jiao Mingxing, Liu Yun. Design and Experimental Study of Electro-Optically Tunable Single Frequency Nd:YAG Laser at 1064 nm[J]. Chinese Journal of Lasers, 2014, 41(3): 302007

    [9] Zhu Ren, Zhou Jun, Liu Jiqiao, Chen Dijun, Yang Yan, Chen Weibiao. Solid State Tunable Single-Frequency Laser Based on Non-Planar Ring Oscillator[J]. Chinese Journal of Lasers, 2011, 38(11): 1102011

    [10] Yang Wenhai, Wang Yajun, Li Zhixiu, Zheng Yaohui. Compactand Low-Noise Intracavity Frequency-Doubled Single-Frequency Nd:YAP/KTP Laser[J]. Chinese Journal of Lasers, 2014, 41(5): 502002

    [11] Zheng Yaohui, Wang Yajun, Peng Kunchi. Single-end Pumping, Single-Frequency Nd:YVO4/LBO Laser with Output Power of 21.5 W[J]. Chinese Journal of Lasers, 2012, 39(6): 602011

    [12] Song Ningfang, Yang Dezhao, Sun Mingjie, Ou Pan, Lin Zhili, Jia Yudong, Jiang Yuntian. Impact of Speckle Noise to the Property of Coherent Lidar System[J]. Chinese Journal of Lasers, 2011, 38(10): 1005001

    [13] Jin Dongchen, Yu Haohai, Shi Hongxing, Wang Ke, Zhang Huaijin, Wang Pu. All-Solid-State Single-Frequency Yb:GdCOB Microchip Laser with Fiber Coupled Output[J]. Chinese Journal of Lasers, 2013, 40(s1): 102003

    Zheng Yaohui, Li Fengqin, Zhang Kuanshou, Peng Kunchi. Progress of All-Solid-State Single-Frequency Lasers[J]. Chinese Journal of Lasers, 2009, 36(7): 1635
    Download Citation