• High Power Laser and Particle Beams
  • Vol. 34, Issue 10, 104012 (2022)
Lixin Yan and Zhuoyuan Liu
Author Affiliations
  • Accelerator Laboratory, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.11884/HPLPB202234.220134 Cite this Article
    Lixin Yan, Zhuoyuan Liu. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams, 2022, 34(10): 104012 Copy Citation Text show less
    References

    [1] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 7, 680-690(2013).

    [2] Basov D N, Averitt R D, Hsieh D. Towards properties on demand in quantum materials[J]. Nature Materials, 16, 1077-1088(2017).

    [3] Baierl S, Hohenleutner M, Kampfrath T, et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 10, 715-718(2016).

    [4] Jin Zuanming, Tkach A, Casper F, et al. Accessing the fundamentals of magnetotransport in metals with terahertz probes[J]. Nature Physics, 11, 761-766(2015).

    [5] Fleischer S, Zhou Yan, Field R W, et al. Molecular orientation and alignment by intense single-cycle THz pulses[J]. Physical Review Letters, 107, 163603(2011).

    [6] Lu Jian, Li Xian, Hwang H Y, et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves[J]. Physical Review Letters, 118, 207204(2017).

    [7] Zhang Xicheng, Xu Jingzhou. Introduction to THz wave photonics[M]. New Yk: Springer, 2010.

    [8] Horiuchi N. Bright terahertz sources[J]. Nature Photonics, 7, 670-671(2013).

    [9] Wen Xiaodong, Huang Senlin, Lin Lin, et al. Superradiant THz undulator radiation source based on a superconducting photo-injector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 820, 75-79(2016).

    [10] Zhao Gang, Huang Senlin, Qin Weilun, et al. Tunable highpower terahertz free electron laser amplifier[C]Proceedings of FEL. 2015: 305307.

    [11] Zhao Gang, Zhao Sheng, Huang Senlin, et al. Strong electron density modulation with a low-power THz source for generating THz superradiant undulator radiation[J]. Physical Review Accelerators and Beams, 22, 060701(2019).

    [12] Zhu Juanfeng, Du Chaohai, Li Fanhong, et al. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure[J]. IEEE Access, 7, 181184-181190(2019).

    [13] Liang Linbo, Liu Weihao, Jia Qika, et al. Superimposed-harmonic Smith-Purcell free-electron lasers driven by periodic electron-bunches[J]. Physics of Plasmas, 26, 013102(2019).

    [14] Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Generation of frequency-chirped density modulation electron beam for producing ultrashort THz radiation pulse[J]. Physical Review Accelerators and Beams, 23, 020704(2020).

    [15] Zhang Haoran, Wang Wenxing, Jiang Shimin, et al. Tuning electron bunch with a longitudinally shaped laser to generate half-cycle terahertz radiation pulse[J]. Journal of Instrumentation, 16, P08019(2021).

    [16] Wu Dai, Li Ming, Yang Xinfan, et al. First lasing of the CAEP THz FEL facility driven by a superconducting accelerator[J]. Journal of Physics: Conference Series, 1067, 032010(2018).

    [17] Wu Dai, Zhou K, Yan L G, et al. Design of highrepetition terahertz superradiation based on CAEP THz FEL superconducting beamline[C]Proceedings of the 39th Free Electron Laser Conference. 2019: 7376.

    [18] Liu Xu, Liu Kaifeng, Qin Bin, et al. Optical alignment and tuning system for the HUST THz-FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 837, 58-62(2016).

    [19] Li Heting, Jia Qika, Zhang Shancai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 41, 018102(2017).

    [20] Svidzinsky A A, Yuan Luqi, Scully M O. Quantum amplification by superradiant emission of radiation[J]. Physical Review X, 3, 041001(2013).

    [21] Dicke R H. Coherence in spontaneous radiation processes[J]. Physical Review, 93, 99-110(1954).

    [22] Gover A, Ianconescu R, Friedman A, et al. Superradiant and stimulated-superradiant emission of bunched electron beams[J]. Reviews of Modern Physics, 91, 035003(2019).

    [23] Tang Chuanxiang, Huang Wenhui, Li Renkai, et al. Tsinghua Thomson scattering X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 608, S70-S74(2009).

    [24] Wang Dan, Yan Lixin, Du Yingchao, et al. Generating ultrabroadband terahertz radiation based on the under-compression mode of velocity bunching[J]. Review of Scientific Instruments, 84, 022704(2013).

    [25] Yan Lixin, Du Qiang, Du Yingchao, et al. UV pulse shaping for the photocathode RF gun[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 637, S127-S129(2011).

    [26] Weling A S, Auston D H. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space[J]. Journal of the Optical Society of America B, 13, 2783-2792(1996).

    [27] Siders C W, Siders J L W, Taylor A J, et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 37, 5302-5305(1998).

    [28] Yan Lixin, Hua Jianfei, Du Yingchao, et al. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches[J]. Journal of Plasma Physics, 78, 429-431(2012).

    [29] Yan Lixin, Du Qiang, Du Yingchao, et al. Ultrasht electron bunch train production by UV laser pulse stacking[C]Proceedings of 1st International Particle Accelerat Conference. 2010: 32103212.

    [30] You Yan, Yan Lixin, Du Yingchao, et al. High power THz source based on coherent radiation of picosecond relativistic electron bunch train[J]. Science China Physics, Mechanics and Astronomy, 54, 197-200(2011).

    [31] Su Xiaolu, Wang Dan, Yan Lixin, et al. Measurement of pre-bunched beam’s longitudinal form factor based on radiation from a tunable-gap undulator[J]. Review of Scientific Instruments, 89, 013304(2018).

    [32] Wang Dan, Yan Lixin, Du Yingchao, et al. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train[J]. Physical Review Accelerators and Beams, 21, 024403(2018).

    [33] Wang Dan, Zhang Hongze, Tian Qili, et al. Twin-bunch compression via velocity bunching in a traveling wave accelerator[J]. Physical Review Accelerators and Beams, 21, 084403(2018).

    [34] Musumeci P, Li Renkai, Marinelli A. Nonlinear longitudinal space charge oscillations in relativistic electron beams[J]. Physical Review Letters, 106, 184801(2011).

    [35] Musumeci P, Li Renkai, Roberts K G, et al. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation[J]. Physical Review Special Topics - Accelerators and Beams, 16, 100701(2013).

    [36] Zhang Zhen, Yan Lixin, Du Yingchao, et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation[J]. Physical Review Letters, 116, 184801(2016).

    [37] Feng Hanqi, Zhou Zheng, Wu Yipeng, et al. Generation of tunable 10-mJ-level terahertz pulses through nonlinear plasma wakefield modulation[J]. Physical Review Applied, 15, 044032(2021).

    [38] Feng Hanqi, Yan Lixin, Wu Yipeng, et al. Near-ideal energy modulator for tunable THz pulse generation using sectioned hollow channel plasma system[J]. Physics of Plasmas, 28, 103101(2021).

    [39] Zhang Zhen, Yan Lixin, Du Yingchao, et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam[J]. Physical Review Accelerators and Beams, 20, 050701(2017).

    [40] Gover A, Sprangle P. A unified theory of magnetic bremsstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers[J]. IEEE Journal of Quantum Electronics, 17, 1196-1215(1981).

    [41] Liang Yifan, Du Yingchao, Su Xiaolu, et al. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams[J]. Applied Physics Letters, 112, 053501(2018).

    [42] Liang Yifan, Du Yingchao, Wang Dan, et al. Selective excitation and control of coherent terahertz Smith-Purcell radiation by high-intensity period-tunable train of electron micro-bunches[J]. Applied Physics Letters, 113, 171104(2018).

    [43] Su Xiaolu, Yan Lixin, Wang Dan, et al. Recent experimental results on highpeakcurrent electron bunch bunch trains interacting with a THz undulat[C]Proceedings of the 38th International Free Electron Laser Conference. 2017: 474476.

    [44] Su Xiaolu, Wang Dan, Tian Qili, et al. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU[J]. Journal of Instrumentation, 13, C01020(2018).

    [45] Antipov S, Baryshev S V, Kostin R, et al. Efficient extraction of high power THz radiation generated by an ultra-relativistic electron beam in a dielectric loaded waveguide[J]. Applied Physics Letters, 109, 142901(2016).

    [46] Wang Dan, Su Xiaolu, Du Yingchao, et al. Non-perturbing THz generation at the Tsinghua University Accelerator Laboratory 31 MeV electron beamline[J]. Review of Scientific Instruments, 89, 093301(2018).

    [47] Wang Dan, Su Xiaolu, Tian Qili, et al. Preliminary results on the resonant excitation of THz wakefield in a multimode dielectric loaded waveguide by bunch train[C]Proceedings of IPAC. 2017: 34263428.

    [48] Fisher A, Park Y, Lenz M, et al. Single-pass high-efficiency terahertz free-electron laser[J]. Nature Photonics, 16, 441-447(2022).

    [49] Yu Zijia, Zhang Liwen, Liu Weihao, et al. Coherent terahertz emission using metasurfaces to intercept a flat electron beam[J]. Physical Review Applied, 17, 014038(2022).

    [50] Kaminer I, Kooi S E, Shiloh R, et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder[J]. Physical Review X, 7, 011003(2017).

    [51] Liu Wenxin, Huang Wenhui, Du Yingchao, et al. Terahertz coherent transition radiation based on an ultrashort electron bunching beam[J]. Chinese Physics B, 20, 074102(2011).

    [52] Wang Wei, Du Yingchao, Yan Lixin, et al. Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches[J]. Physical Review Accelerators and Beams, 20, 112801(2017).

    [53] Tian Qili, Du Yingchao, Xu Hanxun, et al. Single-shot spatial-temporal electric field measurement of intense terahertz pulses from coherent transition radiation[J]. Physical Review Accelerators and Beams, 23, 102802(2020).

    [54] Li Qian, Stoica V A, Paściak M, et al. Subterahertz collective dynamics of polar vortices[J]. Nature, 592, 376-380(2021).

    [55] Disa A S, Nova T F, Cavalleri A. Engineering crystal structures with light[J]. Nature Physics, 17, 1087-1092(2021).

    [56] Kozina M, Fechner M, Marsik P, et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 15, 387-392(2019).

    [57] Baldini E, Belvin C A, Rodriguez-Vega M, et al. Discovery of the soft electronic modes of the trimeron order in magnetite[J]. Nature Physics, 16, 541-545(2020).

    [58] Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 8, 119-123(2014).

    [59] Kurihara T, Watanabe H, Nakajima M, et al. Macroscopic magnetization control by symmetry breaking of photoinduced spin reorientation with intense terahertz magnetic near field[J]. Physical Review Letters, 120, 107202(2018).

    [60] Maag T, Bayer A, Baierl S, et al. Coherent cyclotron motion beyond Kohn’s theorem[J]. Nature Physics, 12, 119-123(2016).

    [61] Su Xiaolu, Yan Lixin, Du Yingchao, et al. Monitoring of electron bunch length by using Terahertz coherent transition radiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 402, 157-161(2017).

    [62] Wang Dan, Su Xiaolu, Yan Lixin, et al. Phase control with two-beam interferometry method in a terahertz dielectric Wakefield accelerator[J]. Applied Physics Letters, 111, 174102(2017).

    [63] Hanuka A, Emma C, Maxwell T, et al. Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics[J]. Scientific Reports, 11, 2945(2021).

    [64] Konoplev I V, Doucas G, Harrison H, et al. Single shot, nondestructive monitor for longitudinal subpicosecond bunch profile measurements with femtosecond resolution[J]. Physical Review Accelerators and Beams, 24, 022801(2021).

    [65] Xu Hanxun, Yan Lixin, Du Yingchao, et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 15, 426-430(2021).

    Lixin Yan, Zhuoyuan Liu. Terahertz source based on relativistic electron beams[J]. High Power Laser and Particle Beams, 2022, 34(10): 104012
    Download Citation