• Nano-Micro Letters
  • Vol. 16, Issue 1, 055 (2024)
Xudong Li1, Zhuomin Qiang2,*, Guokang Han2,**, Shuyun Guan1..., Yang Zhao1, Shuaifeng Lou2 and Yongming Zhu1,***|Show fewer author(s)
Author Affiliations
  • 1Department of Applied Chemistry, Harbin Institute of Technology at Weihai, Weihai 264209, People’s Republic of China
  • 2MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01275-3 Cite this Article
    Xudong Li, Zhuomin Qiang, Guokang Han, Shuyun Guan, Yang Zhao, Shuaifeng Lou, Yongming Zhu. Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization[J]. Nano-Micro Letters, 2024, 16(1): 055 Copy Citation Text show less
    References

    [1] D. Wang, X. Mu, P. He, H. Zhou, Materials for advanced Li–O2 batteries: explorations, challenges and prospects. Mater. Today 26, 87–99 (2019).

    [2] X. Wu, B. Niu, H. Zhang, Z. Li, H. Luo et al., Enhancing the reaction kinetics and reversibility of Li–O2 batteries by multifunctional polymer additive. Adv. Energy Mater. 13, 2203089 (2023).

    [3] L. Ren, R. Zheng, D. Du, Y. Yan, M. He et al., Optimized orbital occupancy of transition metal in spinel Ni–Co oxides with heteroatom doping for aprotic Li–O2 battery. Chem. Eng. J. 430, 132977 (2022).

    [4] Q. Lv, Z. Zhu, Y. Ni, J. Geng, F. Li, Spin-State manipulation of two-dimensional metal–organic framework with enhanced metal–oxygen covalency for lithium–oxygen batteries. Angew. Chem. Int. Ed. 61, e202114293 (2022).

    [5] Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li–O2 batteries. Angew. Chem. Int. Ed. 61, e202201416 (2022).

    [6] X. Li, G. Han, S. Lou, Z. Qiang, J. Zhu et al., Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy 93, 106810 (2022).

    [7] L. Song, W. Zhang, Y. Wang, X. Ge, L. Zou et al., Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 11, 2191 (2020).

    [8] Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li et al., Lewis-acidic PtIr multipods enable high-performance Li–O2 batteries. Angew. Chem. Int. Ed. 60, 26592–26598 (2021).

    [9] S. Ke, W. Li, Y. Gu, J. Su, Y. Liu et al., Covalent organic frameworks with Ni-bis (dithiolene) and Co-porphyrin units as bifunctional catalysts for Li–O2. Sci. Adv. 9, eadf2398 (2023).

    [10] B. Chen, X. Zhong, G. Zhou, N. Zhao, H. Cheng, Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv. Mater. 34, 2105812 (2022).

    [11] Y. Sun, S. Dai, High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021).

    [12] Y. Xin, S. Li, Y. Qian, W. Zhu, H. Yuan et al., High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306 (2020).

    [13] P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li–O2 batteries. Small 19, 2206742 (2023).

    [14] X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications. Adv. Mater. 32, 2002853 (2020).

    [15] G.S. Hegde, R. Sundara, Entropy stabilized oxide nanocrystals as reaction promoters in lithium–O2 batteries. Batter. Supercaps 5, e202200068 (2022).

    [16] B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    [17] F. Li, M. Li, H. Wang, X. Wang, L. Zheng et al., Oxygen vacancy-mediated growth of amorphous discharge products toward an ultrawide band light-assisted Li–O2 batteries. Adv. Mater. 34, 2107826 (2022).

    [18] X. Li, G. Han, Z. Qian, Q. Liu, Z. Qiang et al., π-conjugation induced anchoring of ferrocene on graphdiyne enable shuttle-free redox mediation in lithium–oxygen batteries. Adv. Sci. 9, 2103964 (2022).

    [19] X. Li, Z. Qian, G. Han, B. Sun, P. Zuo et al., Perovskite LaCox Mn1–x O3−σ with tunable defect and surface structures as cathode catalysts for Li–O2 batteries. ACS Appl. Mater. Interfaces 12, 10452–10460 (2020).

    [20] Z. Li, Q. Wang, X. Bai, M. Wang, Z. Yang et al., Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy Environ. Sci. 14, 5035–5043 (2021).

    [21] W. Zhao, J. Wang, R. Yin, B. Li, X. Huang et al., Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li–O2 batteries. J. Colloid Interface Sci. 564, 28–36 (2020).

    [22] Y. Gong, W. Ding, Z. Li, R. Su, X. Zhang et al., Inverse spinel cobalt-iron oxide and N-Doped graphene composite as an efficient and durable bifuctional catalyst for Li–O2 batteries. ACS Catal. 8, 4082–4090 (2018).

    [23] G. Zhang, G. Li, J. Wang, H. Tong, J. Wang et al., 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li–oxygen batteries. Adv. Energy Mater. 12, 2103910 (2022).

    [24] Z. Sun, X. Cao, M. Tian, K. Zeng, Y. Jiang et al., Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium–oxygen batteries. Adv. Energy Mater. 11, 2100110 (2021).

    [25] X. Han, L. Zhao, Y. Liang, J. Wang, Y. Long et al., Interfacial electron redistribution on lattice-matching NiS2/NiSe2 homologous heterocages with dual-phase synergy to tune the formation routes of Li2O2. Adv. Energy Mater. 12, 2202747 (2022).

    [26] G. Zhang, C. Liu, L. Guo, R. Liu, L. Miao et al., Electronic “bridge” construction via Ag intercalation to diminish catalytic anisotropy for 2D tin diselenide cathode catalyst in lithium–oxygen batteries. Adv. Energy Mater. 12, 2200791 (2022).

    [27] P. Wang, C. Li, S. Dong, X. Ge, P. Zhang et al., Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li–O2 batteries. Adv. Energy Mater. 9, 1900788 (2019).

    [28] A. Dutta, K. Ito, A. Nomura, Y. Kubo, Quantitative delineation of the low energy decomposition pathway for lithium peroxide in lithium-oxygen battery. Adv. Sci. 7, 2001660 (2020).

    [29] S. Lau, L.A. Archer, Nucleation and growth of lithium peroxide in the Li–O2 battery. Nano Lett. 15, 5995–6002 (2015).

    [30] E. Dickinson, H. Ekström, E. Fontes, COMSOL Multiphysics®: finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 71–74 (2014).

    [31] Y. Qiao, S. Wu, J. Yi, Y. Sun, S. Guo et al., From O2- to HO2-: reducing by-products and overpotential in Li–O2 batteries by water addition. Angew. Chem. Int. Ed. 129, 5042–5046 (2017).

    [32] Z. Zhao, L. Guo, Z. Peng, Lithium–oxygen chemistry at well-designed model interface probed by in situ spectroscopy coupled with theoretical calculations. Adv. Funct. Mater. (2023).

    [33] B. Chen, D. Wang, J. Tan, Y. Liu, M. Jiao, Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li–CO2 Batteries. J. Am. Chem. Soc. 144, 3106–3116 (2022).

    [34] Y. Song, F. Kong, X. Sun, Q. Liu, X. Li et al., Highly reversible solid-state lithium–oxygen batteries by size-matching between Fe–Fe cluster and Li2-xO2. Adv. Energy Mater. 13, 2203660 (2022).

    [35] Q. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang et al., Atomic ruthenium-riveted metal–organic framework with tunable d-band modulates oxygen redox for Lithium–oxygen batteries. J. Am. Chem. Soc. 144, 23239–23246 (2022).

    [36] Z. Zhu, Q. Lv, Y. Ni, S. Gao et al., Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium–oxygen battery. Angew. Chem. Int. Ed. 61, e202116699 (2022).

    Xudong Li, Zhuomin Qiang, Guokang Han, Shuyun Guan, Yang Zhao, Shuaifeng Lou, Yongming Zhu. Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization[J]. Nano-Micro Letters, 2024, 16(1): 055
    Download Citation