• Semiconductor Optoelectronics
  • Vol. 43, Issue 2, 243 (2022)
SUN Bo1,2, ZHAO Zeping1,2, and LIU Jianguo1,2,*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022022101 Cite this Article
    SUN Bo, ZHAO Zeping, LIU Jianguo. High Gain Receiver Optical Subassembly Based on Hybrid Integration Technology[J]. Semiconductor Optoelectronics, 2022, 43(2): 243 Copy Citation Text show less
    References

    [1] Luo Biao, Wang Renfan, Hu Hai, et al. Review of RoF core technologies[J]. Science & Technology Review, 2016, 34(16): 45-53.

    [2] Shivika R, Rakesh G. A review on radio-over-fiber technology-based integrated (Optical/Wireless) networks[J]. J. of Optical Communications, 2017, 38(1): 19-25.

    [3] Zhang Xiupu. Broadband linearization for 5G fronthaul transmission[J]. Frontiers of Optoelectronics, 2018, 11(2): 107-115.

    [4] He J Y, Lee J, Sithamparanathan K, et al. Machine learning techniques in radio-over-fiber systems and networks[J]. Photonics, 2020, 7(4): 105-135.

    [5] Chen N, Minoru O. Toward 6G internet of things and the convergence with RoF system[J]. IEEE Internet of Things J., 2021, 8(11): 8719-8733.

    [6] David Z B, Gabriel C, Ivan A, et al. Impact of partial phase decorrelation on the performance of pilot-assisted millimeter-wave RoF-OFDM systems[J]. Physical Communication, 2018, 26: 106-115.

    [7] Ahmadreza F, Wang Y, Reza M, et al. A review of wireless-photonic systems: design methodologies and topologies, constraints, challenges, and innovations in electronics and photonics[J]. Optics Communications, 2016, 373: 16-34.

    [8] Vishal S, Amarpal S, Sharm A K. Challenges to radio over fiber (RoF) technology and its mitigation schemes-A review[J]. Optik, 2012, 123(4): 338-342.

    [9] Zhang Zhike, Liu Yu, An Junming, et al. 112Gbit/s transmitter optical subassembly based on hybrid integrated directly modulated lasers[J]. Chinese Optics Lett., 2018, 16(6): 062501.

    [10] Shigeru K, Takeshi F, Nobuhiro N, et al. Ultra-compact 100GbE transmitter optical subassembly for 40km SMF transmission[J]. J. of Lightwave Technol., 2013, 31(4): 602-608.

    [11] Park K, Lee G D, Lee S N, et al. Compact size and low cost hermetic sealed 100Gb/s (25Gb/s×4Ch) receiver optical sub-assembly (ROSA) design using AIN substrate and Si optical bench (SiOB) cover[C]// 2017 European Conf. on Optical Communication (ECOC), 2017: 1-3.

    [12] Shigeru K, Takeshi F, Akira O, et al. A compact EADFB laser array module for a future 100Gb/s ethernet transceiver[J]. Quantum Electron., 2011, 17(5): 1191-1197.

    [13] Takeshi F, Toshio I, Shigeru K, et al. Ultracompact, 160Gbit/s transmitter optical subassembly based on 40Gbit/s×4 monolithically integrated light source[J]. Opt. Express, 2013, 21(1): 182-189.

    [14] Li Chaoyi, An Junming, Zhang Jiashun, et al. 4×20GHz silica-based AWG hybrid integrated receiver optical sub-assemblies[J]. Chinese Optics Lett., 2018, 16(6): 060603.

    [15] Zhao Zeping, Wang Jiaojiao, Han Xueyan, et al. Ultra-compact four-lane hybrid-integrated ROSA based on three-dimensional microwave circuit design[J]. Chinese Optics Lett., 2019, 17(3): 030401.

    [16] Yang H, Ke L, Cosimo L, et al. High-speed DD transmission using a silicon receiver co-integrated with a 28nm CMOS gain-tunable fully-differential TIA[J]. J. of Lightwave Technol., 39(4): 1138-1147.

    [17] Wang G, Tokumitsu T, Hanawa I, et al. Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model[J]. IEEE Microwave and Wireless Components Lett., 12(10): 378-380.

    SUN Bo, ZHAO Zeping, LIU Jianguo. High Gain Receiver Optical Subassembly Based on Hybrid Integration Technology[J]. Semiconductor Optoelectronics, 2022, 43(2): 243
    Download Citation