[2] RIBEIRO R, CRUZ G, MATOS J, et al. A data set for airborne maritime surveillance environments[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2720-2732.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus: IEEE, 2014: 580-587.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788.
[5] LIU T, PANG B, AI S M, et al. Study on visual detection algorithm of sea surface targets based on improved YOLOv3[J]. Sensors, 2020, 20(24): 7263.
[6] SUN X Q, LIU T, YU X P, et al. Unmanned surface vessel visual object detection under all-weather conditions with optimized feature fusion network in YOLOv4[J]. Journal of Intelligent & Robotic Systems, 2021, 103(3).doi: 10.1007/s10846-021-01499-8.
[7] YANG Z Q, LI Y, WANG B, et al. A lightweight sea surface object detection network for unmanned surface vehicles[J]. Journal of Marine Science and Engineering, 2022, 10(7): 965.
[10] ZHANG X L, WANG H S, CHENG W D. Vessel detection and classification fusing radar and vision data[C]//7th International Conference on Information Science and Technology (ICIST). Da Nang: IEEE, 2017: 474-479.
[11] ZHANG W, YANG C F, JIANG F, et al. A water surface moving target detection based on information fusion using deep learning[J]. Journal of Physics: Conference Series, 2020, 1606: 012020.
[13] NEUBECK A, GOOL L V. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition (ICPR). Hong Kong: IEEE, 2006: 850-855.
[14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 7464-7475.
[15] PARK J, WOO S, LEE J Y, et al. A simple and light-weight attention module for convolutional neural networks[J]. International Journal of Computer Vision, 2020, 128(4): 783-798.
[16] ZHU X Z,HU H,LIN S,et al. Deformable ConvNets v2: more deformable, better results[R]. Los Alamos: arXiv Preprint, 2018: arXiv: 1811.11168.
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 7132-7141.
[18] MNIH V,HEESS N,GRAVES A. Recurrent models of visual attention[C]//Proceedings of the 28th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2204-2212.
[19] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 764-773.
[20] BOVCON B, MUHOVIC J, VRANAC D, et, al. MODS—a USV-oriented object detection and obstacle segmentation benchmark[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 13403-13418.
[21] SHAO Z F, WU W J, WANG Z Y, et al. SEASHIPS: a large-scale precisely annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2593-2604.
[22] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 21-37.
[23] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Los Alamos: arXiv Preprint, 2018: arXiv: 1804.02767.
[24] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville: IEEE, 2021: 13024-13033.