• Frontiers of Optoelectronics
  • Vol. 4, Issue 1, 2 (2011)
Weiming WANG1, Jun YANG1、2、*, Xin ZHU3, and Jamie PHILLIPS1
Author Affiliations
  • 1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA
  • 2Philips Lumileds Lighting Company, San Jose, CA 95131, USA
  • 3Haosolar Co., Yixing 214213, China
  • show less
    DOI: 10.1007/s12200-011-0151-z Cite this Article
    Weiming WANG, Jun YANG, Xin ZHU, Jamie PHILLIPS. Intermediate-band solar cells based on dilute alloys and quantum dots[J]. Frontiers of Optoelectronics, 2011, 4(1): 2 Copy Citation Text show less
    References

    [1] Green M A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 2001, 9(2): 123-135

    [2] Green M A, Emery K, Hishikawa Y, Warta W.Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 2010, 18(5):346-352

    [3] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510-519

    [4] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813-3818

    [5] Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures, 2002, 14(1-2): 115-120

    [6] García I, Rey-Stolle I, Galiana B, Algora C. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Applied Physics Letters, 2009, 94(5): 053509

    [7] Algora C, Rey-Stolle I, Garcia I, Galiana B, Baudrit M, Espinet P, Barrigón E, Gonzalez J R. III-V multijunction solar cells for ultrahigh concentration photovoltaics. 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, 2009, 1571-1575

    [8] Geisz J F, Kurtz S,Wanlass MW,Ward J S, Duda A, Friedman D J, Olson JM, McMahonWE, Moriarty T E, Kiehl J T. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters, 2007, 91(2): 023502

    [9] Swanson R M. The promise of concentrators. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 93-111

    [10] Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. Journal of Applied Physics, 2008, 104(2): 024507

    [11] CdTe PV progresses to mass production, http://www.semiconductortoday.com/features/SemiconductorToday%20-%20CdTe%20PV.pdf

    [12] Yan B, Yue G, Owens J M, Yang J, Guha S. Over 15% efficient hydrogenated amorphous silicon based triple-junction solar cells incorporating nanocrystalline silicon. 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 2006, 1477-1480

    [13] Wolf M. Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proceedings of the IRE, 1960, 48(7): 1246-1263

    [14] Luque A, Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, 78(26): 5014-5017

    [15] Thomas D G, Hopfield J J, Frosch C J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review Letters, 1965, 15(22): 857-860

    [16] Cuthbert J D, Thomas D G. Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe. Physical Review, 1967, 154 (3): 763-771

    [17] Wu J, Shan W, Walukiewicz W. Band anticrossing in highly mismatched III-V semiconductor alloys. Semiconductor Science and Technology, 2002, 17(8): 860-869

    [18] Yu K M,Walukiewicz W,Wu J, Shan W, Beeman JW, Scarpulla M A, Dubon O D, Becla P. Diluted II-VI oxide semiconductors with multiple band gaps. Physical Review Letters, 2003, 91(24): 246403

    [19] Burki Y, Czaja W, Capozzi V, Schwendimann P. The temperature dependence of the photoluminescence and lifetime of ZnTe:O. Journal of Physics Condensed Matter, 1993, 5(49): 9235-9252

    [20] Wang W, Bowen W, Spanninga S, Lin S, Phillips J. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. Journal of Electronic Materials, 2009, 38(1): 119-125

    [21] Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T. Epitaxial growth and optical investigations of ZnTeO alloys. Physica Status Solidi a-Applications and Materials Science 2006, 203 (11): 2653-2657.

    [22] Cuthbert J D. Luminescence and free carrier decay times in semiconductors containing isoelectronic traps. Journal of Applied Physics, 1971, 42(2): 739-746

    [23] Thomas D G, Hopfield J J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review, 1966, 150(2): 680-689

    [24] Wang W M, Lin A S, Phillips J D. Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters, 2009, 95(1): 011103

    [25] Wang W. Intermediate band solar cells based on ZnTeO. Ph.D. dissertation, University of Michigan, 2010

    [26] Marti A, Cuadra L, Luque A. Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transactions on Electron Devices, 2002, 49(9): 1632-1639

    [27] Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Diaz P. Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band. Journal of Applied Physics, 2006, 99(9): 094503

    [28] Lin A S,WangWM, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. Journal of Applied Physics, 2009, 105(6): 064512

    [29] Wang W M, Lin A S, Phillips J D, Metzger W K. Generation and recombination rates at ZnTe:O intermediate band states. Applied Physics Letters, 2009, 95(26): 261107

    [30] Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L, Balenzategui J L. Experimental analysis of the quasi-Fermi level split in quantum dot intermediateband solar cells. Applied Physics Letters, 2005, 87(8): 083505

    [31] Lin A S, Phillips J D. Drift-diffusion modeling for impurity photovoltaic devices. IEEE Transactions on Electron Devices, 2009, 56(12): 3168-3174

    [32] Tanaka T, Yu K M, Stone P R, Beeman J W, Dubon O D, Reichertz L A, Kao V M, Nishio M, Walukiewicz W. Demonstration of homojunction ZnTe solar cells. Journal of Applied Physics, 2010, 108(2): 024502

    [33] Wang W, Phillips J. ZnO/ZnSe/ZnTe heterojunction for ZnTe-based solar cells. Journal of Electronic Materials, 2010 (in press)

    [34] Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters, 1993, 63(23): 3203-3205

    [35] Berger P R, Chang K, Bhattacharya P, Singh J, Bajaj K K. Role of strain and growth-conditions on the growth front profile of InxGa1 - xAs on GaAs during the pseudomorphic growth regime. Applied Physics Letters, 1988, 53(8): 684-686

    [36] Bhattacharya P, Mi Z. Quantum-dot optoelectronic devices. Proceedings of the IEEE, 2007, 95(9): 1723-1740

    [37] Yang J, Bhattacharya P, Mi Z. High-performance In0.5Ga0.5As/GaAs quantum dot lasers on silicon with multiple layer quantum dot dislocation filters. IEEE Transactions on Electron Devices, 2007, 54 (11): 2849-2855

    [38] Yang J, Bhattacharya P, Mi Z, Qin G X,Ma Z Q. Quantum dot lasers and integrated optoelectronics on silicon platform. Chinese Optics Letters, 2008, 6(10): 727-731

    [39] Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350-1353

    [40] Mi Z, Yang J, Bhattacharya P. Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 mm metamorphic InAs quantum dot lasers on GaAs. Journal of Crystal Growth, 2007, 301-302: 923-926

    [41] Yang J, Heo J, Zhu T, Xu J, Topolancik J, Vollmer F, Ilic R, Bhattacharya P. Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Applied Physics Letters, 2008, 92(26): 261110

    [42] Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Applied Physics Letters, 2006, 88(18): 183111

    [43] Wei G, Forrest S R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Letters, 2007, 7(1): 218-222

    [44] Laghumavarapu R B, El-Emawy M, Nuntawong N, Moscho A, Lester L F, Huffaker D L. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Applied Physics Letters, 2007, 91(24): 243115

    [45] Oshima R, Takata A, Okada Y. Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Applied Physics Letters, 2008, 93(8): 083111

    Weiming WANG, Jun YANG, Xin ZHU, Jamie PHILLIPS. Intermediate-band solar cells based on dilute alloys and quantum dots[J]. Frontiers of Optoelectronics, 2011, 4(1): 2
    Download Citation