• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 034001 (2025)
Yuxuan Liu1,†, ChaoHsu Lai1, Huaxin Xiong1, Lijie Zheng1..., Shirui Cai1, Zongmin Lin1, Shouqiang Lai1,*, Tingzhu Wu1,2,* and Zhong Chen1,2,*|Show fewer author(s)
Author Affiliations
  • 1Xiamen University, Department of Electronic Science, National Integrated Circuit Industry and Education Integration Innovation Platform, Xiamen, China
  • 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
  • show less
    DOI: 10.1117/1.APN.4.3.034001 Cite this Article Set citation alerts
    Yuxuan Liu, ChaoHsu Lai, Huaxin Xiong, Lijie Zheng, Shirui Cai, Zongmin Lin, Shouqiang Lai, Tingzhu Wu, Zhong Chen, "Artificial-intelligence-aided fabrication of high-performance full-color displays," Adv. Photon. Nexus 4, 034001 (2025) Copy Citation Text show less
    References

    [1] F. Pelayo García de Arquer et al. Semiconductor quantum dots: technological progress and future challenges. Science, 373, eaaz8541(2021). https://doi.org/10.1126/science.aaz8541

    [2] Q. Hu et al. High-performance all-solution-processed inverted quantum dot light-emitting diodes enabled by water treatment. Nano Res., 16, 10215-10221(2023). https://doi.org/10.1007/s12274-023-5635-9

    [3] T. H. Kim et al. Full-color quantum dot displays fabricated by transfer printing. Nat. Photonics, 5, 176-182(2011). https://doi.org/10.1038/nphoton.2011.12

    [4] Z. Liu et al. Micro-light-emitting diodes with quantum dots in display technology. Light: Sci. Appl., 9, 83(2020). https://doi.org/10.1038/s41377-020-0268-1

    [5] B. Li et al. Advances in understanding quantum dot light-emitting diodes. Nat. Rev. Electr. Eng., 1, 412-425(2024). https://doi.org/10.1038/s44287-024-00059-0

    [6] M. K. Choi et al. Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flex Electron., 2, 10(2018). https://doi.org/10.1038/s41528-018-0023-3

    [7] H. Yu et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm. Opt. Lett., 46, 3271-3274(2021). https://doi.org/10.1364/OL.431933

    [8] H. D. Sun et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate. Adv. Funct. Mater., 29, 1905445(2019). https://doi.org/10.1002/adfm.201905445

    [9] N. F. Gardner et al. Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A/cm2. Appl. Phys. Lett., 91, 243506(2007). https://doi.org/10.1063/1.2807272

    [10] J. Iveland et al. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett., 110, 177406(2013). https://doi.org/10.1103/PhysRevLett.110.177406

    [11] G.-B. Lin et al. Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency. Appl. Phys. Lett., 100, 161106(2012). https://doi.org/10.1063/1.4704366

    [12] A. Mei et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345, 295-298(2014). https://doi.org/10.1126/science.1254763

    [13] X. Jin et al. GaN microdisk light-emitting diodes. Appl. Phys. Lett., 76, 631-633(2000). https://doi.org/10.1063/1.125841

    [14] Y. J. Hong et al. Visible-color-tunable light-emitting diodes. Adv. Mater., 23, 3284-3288(2011). https://doi.org/10.1002/adma.201100806

    [15] H.-V. Han et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express, 23, 32504-32515(2015). https://doi.org/10.1364/OE.23.032504

    [16] Y. Lin et al. Printable quantum-dot photopolymers as color-conversion layers for MicroLED displays, 52, 1294-1297(2021). https://doi.org/10.1002/sdtp.14938

    [17] S. Chen et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res., 7, 416-422(2019). https://doi.org/10.1364/PRJ.7.000416

    [18] S. Hwangbo et al. Wafer-scale monolithic integration of full-color micro-LED display using MoS2 transistor. Nat. Nanotechnol., 17, 500-506(2022). https://doi.org/10.1038/s41565-022-01102-7

    [19] L. Qi et al. Monolithic full-color active-matrix micro-LED micro-display using InGaN/AlGaInP heterogeneous integration. Light: Sci. Appl., 12, 258(2023). https://doi.org/10.1038/s41377-023-01298-w

    [20] M. H. Memon et al. A three-terminal light-emitting and detecting diode. Nat. Electron., 7, 279-287(2024). https://doi.org/10.1038/s41928-024-01142-y

    [21] H.-Y. Lin et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res., 5, 411-416(2017). https://doi.org/10.1364/PRJ.5.000411

    [22] K. Q. Wang et al. Deep learning phase recovery: data-driven, physics-driven, or a combination of both?. Adv. Photonics Nexus, 3, 056006(2024). https://doi.org/10.1117/1.APN.3.5.056006

    [23] K. Qu et al. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing. Adv. Photonics Nexus, 2, 016010(2023). https://doi.org/10.1117/1.APN.2.1.016010

    [24] W. Du, T. Zhang, T. Liu. A convolutional neural network based local dimming technology. J. Northeastern Univ.-Nat. Sci., 42, 624-632(2021). https://doi.org/10.12068/j.issn.1005-3026.2021.05.003

    [25] T. Zhang et al. High‐performance local‐dimming algorithm based on image characteristic and logarithmic function. J. Soc. Inform. Disp., 27, 85-100(2019). https://doi.org/10.1002/jsid.740

    [26] S. S. Gupta et al. HDR-like image from pseudo-exposure image fusion: a genetic algorithm approach. IEEE Trans. Consum. Electron., 67, 119-128(2021). https://doi.org/10.1109/TCE.2021.3066431

    [27] P. Li et al. Full-color micro-display by heterogeneous integration of InGaN blue/green dual-wavelength and AlGaInP red LEDs. Opt. Express, 30, 23499-23510(2022). https://doi.org/10.1364/OE.459226

    [28] S. Huang et al. Advances in full-color microdisplays based on MicroLED for AR and VR applications. IEEE Open J. Immersive Disp., 1, 127-134(2024). https://doi.org/10.1109/OJID.2024.3446761

    [29] V. K. Bandari, O. G. Schmidt. A bright future for micro-LED displays. Light: Sci. Appl., 13, 317(2024). https://doi.org/10.1038/s41377-024-01683-z

    [30] T. Wu et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Res., 9, 2132-2143(2021). https://doi.org/10.1364/PRJ.431095

    [31] B. Rouet-Leduc et al. Optimization of GaN LEDs and the reduction of efficiency droop using active machine learning. Sci. Rep., 6, 24862(2016). https://doi.org/10.1038/srep24862

    [32] C.-H. Huang et al. Micro-LED backlight module by deep reinforcement learning and micro-macro-hybrid environment control agent. Photonics Res., 10, 269-277(2022). https://doi.org/10.1364/PRJ.441188

    [33] Y. Lee et al. Artificial intelligence-assisted auto-optical inspection toward the stain detection of an organic light-emitting diode panel at the backplane fabrication step. Displays, 79, 102478(2023). https://doi.org/10.1016/j.displa.2023.102478

    [34] C. Xie et al. A Mura detection method based on an improved generative adversarial network. IEEE Access, 9, 68826-68836(2021). https://doi.org/10.1109/ACCESS.2021.3076792

    [35] F. Y. Lu et al. Machine learning for perovskite optoelectronics: a review. Adv. Photonics, 6, 054001(2024). https://doi.org/10.1117/1.AP.6.5.054001

    [36] Y. Wu et al. Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory. Nat. Commun., 15, 138(2024). https://doi.org/10.1038/s41467-023-44236-5

    [37] S.-J. Song et al. Deep-learning-based pixel compensation algorithm for local dimming liquid crystal displays of quantum-dot backlights. Opt. Express, 27, 15907-15917(2019). https://doi.org/10.1364/OE.27.015907

    [38] K. Bucka et al. Carbon quantum dots as phosphors in LEDs: perspectives and limitations—a critical review of the literature. Electronics, 13, 4481(2024). https://doi.org/10.3390/electronics13224481

    [39] W. Meng et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol., 16, 1231-1236(2021). https://doi.org/10.1038/s41565-021-00966-5

    [40] W. Lv et al. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers. Nanoscale Res. Lett., 7, 617(2012). https://doi.org/10.1186/1556-276X-7-617

    [41] S. Jin et al. GaN microdisk light emitting diodes. Appl. Phys. Lett., 76, 631-633(2000). https://doi.org/10.1063/1.125841

    [42] Z. Zhuang et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv. Functi. Mater., 26, 36-43(2016). https://doi.org/10.1002/adfm.201502870

    [43] M. S. Ibrahim et al. Machine learning and digital twin driven diagnostics and prognostics of light-emitting diodes. Laser Photonics Rev., 14, 2000254(2020). https://doi.org/10.1002/lpor.202000254

    [44] J. Piprek. Simulation-based machine learning for optoelectronic device design: perspectives, problems, and prospects. Opt. Quantum Electron., 53, 175(2021). https://doi.org/10.1007/s11082-021-02837-8

    [45] Z. Jiang et al. Advanced design of a III‐nitride light‐emitting diode via machine learning. Laser Photonics Rev., 17, 2300113(2023). https://doi.org/10.1002/lpor.202300113

    [46] T.-Y. Lee et al. Optimized design with artificial intelligence quantum dot white mini LED backlight module development. Crystals, 13, 1411(2023). https://doi.org/10.3390/cryst13101411

    [47] J. Bae et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nat. Commun., 13, 1862(2022). https://doi.org/10.1038/s41467-022-29538-4

    [48] L. Feng et al. Intelligent optimization design of electron barrier layer for AlGaN-based deep-ultraviolet light-emitting diodes. Acta Phys. Sin., 72, 048502(2023). https://doi.org/10.7498/aps.72.20222004

    [49] M. L. Michael et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012). https://doi.org/10.1126/science.1228604

    [50] Y. Zhang et al. A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application. Acta Phys. Sin., 70, 198501(2021). https://doi.org/10.7498/aps.70.20210652

    [51] R. Gui et al. Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coord. Chem. Rev., 296, 91-124(2015). https://doi.org/10.1016/j.ccr.2015.03.023

    [52] L. Zhang et al. Deep learning for additive screening in perovskite light-emitting diodes. Angew. Chemie Int. Ed., 61, e202209337(2022). https://doi.org/10.1002/anie.202209337

    [53] W. Li et al. Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nat. Nanotechnol., 17, 45-52(2021). https://doi.org/10.1038/s41565-021-01010-2

    [54] J. Gong et al. Layered 2D halide perovskites beyond the Ruddlesden–Popper phase: tailored interlayer chemistries for high-performance solar cells. Angew. Chemie Int. Ed., 61, e202112022(2022). https://doi.org/10.1002/anie.202112022

    [55] F. Zhang et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 375, 71-76(2022). https://doi.org/10.1126/science.abj2637

    [56] J. Luo et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541-545(2018). https://doi.org/10.1038/s41586-018-0691-0

    [57] C. Shen et al. High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering. Adv. Photonics, 6, 026002(2024). https://doi.org/10.1117/1.AP.6.2.026002

    [58] C. Lampe et al. Rapid data-efficient optimization of perovskite nanocrystal syntheses through machine learning algorithm fusion. Adv. Mater., 35, 2208772(2023). https://doi.org/10.1002/adma.202208772

    [59] S. Zhao et al. Exploring device physics of Perovskite solar cell via machine learning with limited samples. J. Energy Chem., 94, 441-448(2024). https://doi.org/10.1016/j.jechem.2024.03.003

    [60] K. Lukas et al. Discovering process dynamics for scalable Perovskite solar cell manufacturing with explainable AI. Adv. Mater., 36, 2307160(2023). https://doi.org/10.1002/adma.202307160

    [61] S.-K. S. Fan, Y.-C. Chuang. Automatic detection of Mura defect in TFT-LCD based on regression diagnostics. Pattern Recognit. Lett., 31, 2397-2404(2010). https://doi.org/10.1016/j.patrec.2010.07.013

    [62] S. B. Kang et al. Automatic defect classification of TFT-LCD panels using machine learning, 2175-2177(2009). https://doi.org/10.1109/ISIE.2009.5213760

    [63] K. Nagamine et al. A quantitative evaluation method for luminance and color uniformity of a display screen based on human perceptions, 341-344(2011). https://doi.org/10.1587/transele.E95.C.1699

    [64] H. Zhu et al. Deep learning enabled automatic optical inspection for module-level defects in LCD. IEEE Internet Things J., 9, 1122-1135(2022). https://doi.org/10.1109/JIOT.2021.3079440

    [65] Y. Zhang et al. Stitching based on corrections to obtain a flat image on a curved-edge OLED display. IEEE Trans. Instrum. Meas., 71, 5023012(2022). https://doi.org/10.1109/TIM.2022.3206836

    [66] X. He et al. A survey of defect detection applications based on generative adversarial networks. IEEE Access, 10, 113493-113512(2022). https://doi.org/10.1109/ACCESS.2022.3217227

    [67] C. Lian et al. Research on structural performance and assembly of LED lamps based on automatic manufacturing. Int. J. Interactive Des. Manuf., 17, 1531-1537(2023). https://doi.org/10.1007/s12008-022-01150-2

    [68] G. Zhao et al. Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Front. Optoelectron., 17, 35(2024). https://doi.org/10.1007/s12200-024-00140-4

    [69] C. Li et al. Research on surface defect detection technology based on the zonal and time-sharing computational imaging. IEEE Access, 10, 79574-79583(2022). https://doi.org/10.1109/ACCESS.2022.3163726

    [70] P. Chen et al. Real-time defect detection of TFT-LCD displays using a lightweight network architecture. J. Intell. Manuf., 35, 1337-1352(2024). https://doi.org/10.1007/s10845-023-02110-7

    [71] Y. Zhang et al. A LCD screen Mura defect detection method based on machine vision, 4618-4623(2020). https://doi.org/10.1109/CCDC49329.2020.9164492

    [72] Z. Meng, B. Pallab, G. Wei. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys., 97, 011103(2010). https://doi.org/10.1063/1.3460921

    [73] H. Yang et al. Transfer-learning-based online Mura defect classification. IEEE Trans. Semicond. Manuf., 31, 116-123(2018). https://doi.org/10.1109/TSM.2017.2777499

    [74] Y. Zhang et al. A LCD screen mura defect detection method based on machine vision, 4618-4623(2020). https://doi.org/10.1109/CCDC49329.2020.9164492

    [75] S. W. H. Chen et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res., 7, 416-422(2019). https://doi.org/10.1364/PRJ.7.000416

    [76] S. Kidoguchi, Y. Bamba. Deep convolutional neural network-based quantitative evaluation of display non-uniformity. J. Soc. Inform. Disp., 30, 663-670(2022). https://doi.org/10.1002/jsid.1105

    [77] N. F. Gardner et al. Machine learning and digital twin driven diagnostics and prognostics of light-emitting diodes. Laser Photonics Rev., 14, 2000254(2020). https://doi.org/10.1002/lpor.202000254

    [78] N. F. Gardner et al. Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200  A/cm2. Appl. Phys. Lett., 91, 243506(2018). https://doi.org/10.1063/1.2807272

    [79] T. Zhang et al. Deep CNN-based local dimming technology. Appl. Intell., 52, 903-915(2022). https://doi.org/10.1007/s10489-020-02097-1

    [80] L. Duan et al. Deep controllable backlight dimming for HDR displays using CNNs. Appl. Opt., 59, 4824-4837(2022). https://doi.org/10.1364/AO.405292

    [81] L. Duan et al. Deep controllable backlight dimming for HDR displays. IEEE Trans. Consum. Electron., 9, 2567-2584(2024). https://doi.org/10.1109/TCE.2024.1067834

    [82] Y. Liu et al. A local dimming algorithm based on deep learning, 359-363(2024). https://doi.org/10.1109/ICIPMC62364.2024.10586559

    [83] Z. Liu et al. Microlight-emitting diodes based on InGaN materials with quantum dots. Adv. Mater. Technol., 7, 2101189(2022). https://doi.org/10.1002/admt.202101189

    Yuxuan Liu, ChaoHsu Lai, Huaxin Xiong, Lijie Zheng, Shirui Cai, Zongmin Lin, Shouqiang Lai, Tingzhu Wu, Zhong Chen, "Artificial-intelligence-aided fabrication of high-performance full-color displays," Adv. Photon. Nexus 4, 034001 (2025)
    Download Citation