• Chinese Journal of Lasers
  • Vol. 45, Issue 6, 0614001 (2018)
Huihui Sun, Fengping Yan*, Siyu Tan, Wei Wang, and Sisi Su
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry of Educaiton,Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/CJL201845.0614001 Cite this Article Set citation alerts
    Huihui Sun, Fengping Yan, Siyu Tan, Wei Wang, Sisi Su. Simulation Analysis on Design of Permeability-near-Zero Terahertz Metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001 Copy Citation Text show less
    References

    [1] Wang J L, Zhang B Z, Duan J P et al. Flexible dual-stopband terahertz metamaterial filter[J]. Acta Optica Sinica, 37, 1016001(2017).

    [2] Han H, Wu D W, Liu J J et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 34, 0423003(2014).

    [3] Wang H S, Han K, Sun W et al. Design and experimental investigation of triple-band metamaterial broadband bandpass filter[J]. Acta Optica Sinica, 37, 0623001(2017).

    [4] Enoch S, Tayeb G, Sabouroux P et al. A metamaterial for directive emission[J]. Physical Review Letters, 89, 213902(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000006000021000027000001&idtype=cvips&gifs=Yes

    [5] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 10, 509(1968). http://adsabs.harvard.edu/abs/1968SvPhU..10..509V

    [6] Chen C. Research on the near zero refractive index of artificial electromagnetic metamaterials Xi'an:[D]. Xidian University(2014).

    [7] Pendry J B, Holden A J, Robbins D J et al. Low frequency plasmons in thin-wire structures[J]. Journal of Physics: Condensed Matter, 10, 4785-4809(1998). http://xueshurefer.baidu.com/nopagerefer?id=562808ac462a94fa4c8e13a977edfdbc

    [8] Smith D R, Vier D C, Koschny T et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 71, 036617(2005). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=15903615

    [9] Economou E N, Koschny T, Soukoulis C M. Strong diamagnetic response in split-ring-resonator metamaterials: Numerical study and two-loop model[J]. Physical Review B, 77, 092401(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000077000009092401000001&idtype=cvips&gifs=Yes

    [10] Belov P A, Slobozhanyuk A P, Filonov D S et al. Broadband isotropic μ-near-zero metamaterials[J]. Applied Physics Letters, 103, 211903(2013).

    [11] Lipworth G, Ensworth J, Seetharam K et al. Quasi-static magnetic field shielding using longitudinal mu-near-zero metamaterials[J]. Scientific Reports, 5, 12764(2015). http://europepmc.org/articles/4522651

    [12] Yang F, Rahmat-Samii Y. Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure[C]. IEEE Antennas and Propagation Society International Symposium, 2, 478-481(2001).

    [13] Brown E R, Parker C D, Yablonovitch E. Radiation properties of a planar antenna on a photonic-crystal substrate[J]. Journal of the Optical Society of America B, 10, 404-407(1993). http://www.opticsinfobase.org/abstract.cfm?uri=josab-10-2-404

    [14] Lim S, Caloz C, Itoh T. A reflectodirective system using a composite right/left-handed (CRLH) leaky-wave antenna and heterodyne mixing[J]. IEEE Microwave & Wireless Components Letters, 14, 183-185(2004). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1291458

    [15] Caloz C, Sanada A, Itoh T. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth[J]. IEEE Transactions on Microwave Theory & Techniques, 52, 980-992(2004). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1273741

    [16] Antoniades M A, Eleftheriades G V. A broadband Wilkinson balun using microstrip metamaterial lines[J]. IEEE Antennas & Wireless Propagation Letters, 4, 209-212(2005). http://ieeexplore.ieee.org/document/1490542/

    [17] Smith D R, Schultz S, Markoš P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 65, 195104(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000065000019195104000001&idtype=cvips&gifs=Yes

    [18] Chen X, Grzegorczyk T M, Wu B I et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E, 70, 016608(2004). http://europepmc.org/abstract/MED/15324190

    [19] Szabo Z, Park G H, Hedge R et al. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship[J]. IEEE Transactions on Microwave Theory & Techniques, 58, 2646-2653(2010). http://ieeexplore.ieee.org/document/5565504/

    [20] Zhou J, Economon E N, Koschny T et al. Unifying approach to left-handed material design[J]. Optics Letters, 31, 3620-3622(2006). http://www.ncbi.nlm.nih.gov/pubmed/17130923

    [21] Smith D R. Analytic expressions for the constitutive parameters of magnetoelectric metamaterials[J]. Physical Review E, 81, 036605(2010). http://www.ncbi.nlm.nih.gov/pubmed/20365894

    [22] Zhao R, Koschny T, Soukoulis C M. Chiral metamaterials:Retrieval of the effective parameters with and without substrate[J]. Optics Express, 18, 14553-14567(2010). http://www.ncbi.nlm.nih.gov/pubmed/20639941

    [23] Gu J, Han J, Lu X et al. A close-ring pair terahertz metamaterial resonating at normal incidence[J]. Optics Express, 17, 20307-20312(2009). http://www.ncbi.nlm.nih.gov/pubmed/19997257

    [24] Islam S S. Faruque M R I, Islam M T. A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation[J]. Materials, 8, 4790-4804(2015).

    [25] Yun S, Jiang Z H, Xu Q et al. Low-loss impedance-matched optical metamaterials with zero-phase delay[J]. ACS Nano, 6, 4475-4482(2012). http://europepmc.org/abstract/med/22530626

    [26] Jun Y C, Reno J, Ribaudo T et al. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures[J]. Nano Letters, 13, 5391-5396(2013). http://europepmc.org/abstract/med/24124754

    [27] Park J, Kang J H, Liu X et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers[J]. Scientific Reports, 5, 15754(2015). http://europepmc.org/articles/PMC4637893/

    [28] Maas R, Parsons J, Engheta N et al. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths[J]. Nature Photonics, 7, 907-912(2013). http://www.nature.com/nphoton/journal/v7/n11/fig_tab/nphoton.2013.256_F4.html

    [29] Koschny T, Markoš P, Smith D R et al. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials[J]. Physical Review E, 68, 065602(2003). http://www.ncbi.nlm.nih.gov/pubmed/14754259/?ncbi_mmode=std

    [30] Moitra P, Yang Y, Anderson Z et al. Realization of an all-dielectric zero-index optical metamaterial[J]. Nature Photonics, 7, 791-795(2013). http://www.nature.com/nphoton/journal/v7/n10/fig_tab/nphoton.2013.214_F5.html

    [31] Choi M, Lee S H, Kim Y et al. A terahertz metamaterial with unnaturally high refractive index[J]. Nature, 470, 369-373(2011). http://europepmc.org/abstract/MED/21331038

    CLP Journals

    [1] Pengfei Wang, Mingxia He, Zhen Tian, Hongwei Zhao. Detection of Alcohol-Water Mixture Based on Grating-Structured Terahertz Resonator[J]. Chinese Journal of Lasers, 2019, 46(6): 0614015

    [2] Zijian Cui, Yue Wang, Dongying Zhu, Lisha Yue, Suguo Chen. Perfect Absorption Conditions and Absorption Characteristics of Terahertz Metamaterial Absorber[J]. Chinese Journal of Lasers, 2019, 46(6): 0614023

    Huihui Sun, Fengping Yan, Siyu Tan, Wei Wang, Sisi Su. Simulation Analysis on Design of Permeability-near-Zero Terahertz Metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001
    Download Citation