• Acta Photonica Sinica
  • Vol. 46, Issue 4, 404002 (2017)
JIN Ying-ji*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20174604.0404002 Cite this Article
    JIN Ying-ji. Influence of the Preset Condition and the Two Electrons Transport on the Noise of the Quantum Dot Infrared Photodetectors[J]. Acta Photonica Sinica, 2017, 46(4): 404002 Copy Citation Text show less
    References

    [1] MAHMOODI A, JAHROMI H D, SHEIKHI M H. Dark current modeling and noise analysis in quantum dot infrared photodetectors[J]. IEEE Sensors Journal, 2015, 15(10): 5504-5509.

    [2] LIU Hong-mei, ZHANG Jian-qi, GAO Zhi-xiang, et al. Photodetection of infrared photodetecto based on surrounding barriers formed by charged quantum dots[J]. IEEE Photonics Journal, 2015, 7(3): 6801708.

    [3] JAHROMI H D, SHEIKHI M H, YOUSEFI M H. A numerical approach for analyzing quantum dot infrared photodetectors’ parameters[J]. Optics & Laser Technology, 2012, 44(3): 572-577.

    [4] LIU Hong-mei, WANG Ping, SHI Yun-long. Photocurrent and responsivity of quantum dot infrared photodetectors [J]. Journal of Infrared and Millimeter Waves, 2016, 35(2): 139-142.

    [5] DUBOZ J Y, LIU H C, WASILEWSKI Z R, et al. Tunnel current in quantum dot infrared photodetectors[J]. Journal of Applied Physics, 2003, 93(2): 1320-1322.

    [6] KIM E T, MADHUKAR A, YE Z, et al. High detectivity InAs quantum dot infrared photodetectors [J]. Applied Physics Letter, 2004, 84(17): 3277-3279.

    [7] LU X, VAILLANCOURT J, MEISNER M J. Temperature-dependent photoresponsivity and high-temperature (190K) operation of a quantum dot infrared photodetector [J]. Applied Physics Letter, 2007, 91(5): 051115.

    [8] RYZHII V, KHMYROVA I, PIPA V, et al. Device model for quantum dot infrared photodetectors and their dark-current characteristics [J]. Semi-conductor Science and Technology, 2001, 16: 331-338.

    [9] STIFF-ROBERTS A D, SU X H, CHAKRABARTI S, et al. Contribution of field-assisted tunneling emission to dark current in InAs–GaAs quantum dot infrared photodetectors [J]. IEEE Photonics Technology Letters, 2004, 16(3): 867-869.

    [10] JAHROMI H D, SHEIKHI M H, YOUSEFI M H. Investigation of the quantum dot infrared photodetectors dark current [J]. Optics & Laser Technology, 2011, 43(6): 1020-1025.

    [11] LIU H C. Quantum dot infrared photodetector[J]. Opto-electronics Review, 2003, 11(1): 1-5.

    [12] ZHAO Z Y, YI C, LANTZ K R, et al. Effect of donor-complex-defect-induced dipole field on InAs/GaAs quantum dot infrared photodetector activation energy[J]. Applied Physics Letter, 2007, 90(23): 233511.

    [13] LIN L, ZHEN H L, LI N, et al. Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors[J]. Applied Physics letters, 2010, 97(19): 193511.

    [14] LIU Hong-mei, ZHANG Jian-qi. Performance investigations of quantum dot infrared photodetectors[J]. Infrared Physics & Technology, 2012, 55(4): 320-325.

    [15] BAI Hong-gang, ZHANG Jian-qi, WANG Xiao-rui, et al. Characteristics analysis of dark current in quantum dot infrared photodetectors[J]. Optics & Laser Technology, 2013, 48(6): 337-342.

    [16] SHI Xin, XU Jian-ping, LI Lin-lin, et al. Photoelectrochemical properties of TiO2 nanorod arrays loaded with carbon quantum dots[J]. Chinese Journal of Luminescence, 2015,36(8): 898-905.

    [17] YE Z, CAMPBELL J C, CHEN Z, et al. Noise and photoconductive gain in InAs quantum-dot infrared photodetectors[J]. Applied Physics Letter, 2003, 83(6): 1234-1236.

    JIN Ying-ji. Influence of the Preset Condition and the Two Electrons Transport on the Noise of the Quantum Dot Infrared Photodetectors[J]. Acta Photonica Sinica, 2017, 46(4): 404002
    Download Citation