• Optics and Precision Engineering
  • Vol. 30, Issue 11, 1317 (2022)
Mengran GE*, Quanjing WANG, and Zhenzhong ZHANG
Author Affiliations
  • School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan250101, China
  • show less
    DOI: 10.37188/OPE.20223011.1317 Cite this Article
    Mengran GE, Quanjing WANG, Zhenzhong ZHANG. Simplified calculation of indentation contact deformation of monocrystalline silicon[J]. Optics and Precision Engineering, 2022, 30(11): 1317 Copy Citation Text show less
    References

    [1] 1郭晓光, 翟昌恒, 张亮, 等. 光学石英玻璃纳米级加工性能[J]. 光学 精密工程, 2014, 22(11): 2959-2966. doi: 10.3788/ope.20142211.2959GUOX G, ZHAICH H, ZHANGL, et al. Nano-processing performance of optical glass[J]. Opt. Precision Eng., 2014, 22(11): 2959-2966. (in Chinese). doi: 10.3788/ope.20142211.2959

    [2] 2何坚, 郭泽龙, 罗松保, 等. 基于PMAC时基控制的离轴抛物面超精密加工技术[J]. 光学 精密工程, 2021, 29(8): 1891-1898. doi: 10.37188/OPE.20212908.1891HEJ, GUOZ L, LUOS B, et al. Ultra-precision machining technology of off-axis paraboloid surface based on PMAC time-based control[J]. Opt. Precision Eng., 2021, 29(8): 1891-1898. (in Chinese). doi: 10.37188/OPE.20212908.1891

    [3] S F WANG, C H AN, F H ZHANG et al. An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. International Journal of Machine Tools and Manufacture, 106, 98-108(2016).

    [4] J W YAN, T ASAMI, H HARADA et al. Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Annals, 61, 131-134(2012).

    [5] H HUANG, X L LI, D K MU et al. Science and art of ductile grinding of brittle solids. International Journal of Machine Tools and Manufacture, 161, 103675(2021).

    [6] M BUDNITZKI, M KUNA. Scratching of silicon surfaces. International Journal of Solids and Structures, 162, 211-216(2019).

    [7] M R GE, H T ZHU, C Z HUANG et al. Investigation on critical crack-free cutting depth for single crystal silicon slicing with fixed abrasive wire saw based on the scratching machining experiments. Materials Science in Semiconductor Processing, 74, 261-266(2018).

    [8] S WÜRZNER, R BUCHWALD, H J MÖLLER. Surface damage and mechanical strength of silicon wafers. Physica Status Solidi (c), 12, 1119-1122(2015).

    [9] T Y LIU, P Q GE, W B BI et al. A new method of determining the slicing parameters for fixed diamond wire saw. Materials Science in Semiconductor Processing, 120, 105252(2020).

    [10] Z Q LI, P Q GE, W B BI et al. Influence of silicon anisotropy on surface shape deviation of wafer by diamond wire saw. Materials Science in Semiconductor Processing, 133, 105981(2021).

    [11] T G BIFANO, T A DOW, R O SCATTERGOOD. Ductile-regime grinding: a new technology for machining brittle materials. Journal of Engineering for Industry, 113, 184-189(1991).

    [12] H HUANG, B R LAWN, R F COOK et al. Critique of materials-based models of ductile machining in brittle solids. Journal of the American Ceramic Society, 103, 6096-6100(2020).

    [13] B R LAWN, O BORRERO-LOPEZ, H HUANG et al. Micromechanics of machining and wear in hard and brittle materials. Journal of the American Ceramic Society, 104, 5-22(2021).

    [14] P Z WANG, B WANG, S N MELKOTE. Modeling and simulation of phase transformation and crack formation during scribing of mono-crystalline silicon. International Journal of Mechanical Sciences, 175, 105527(2020).

    [15] H T LIU, W K XIE, Y Z SUN et al. Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon. The International Journal of Advanced Manufacturing Technology, 95, 317-326(2018).

    [16] C ALREJA, S SUBBIAH. A study of scratch speed effects on ductile-brittle transition in silicon. Journal of Micro and Nano-Manufacturing, 7(2019).

    [17] M R GE, P Z WANG, W B BI et al. Fabrication of thin resin-bonded diamond wire and its application to ductile-mode wire sawing of mono-crystalline silicon. Materials Science in Semiconductor Processing, 126, 105665(2021).

    [18] T A MAHMOUD, J TAMAKI, J W YAN. Three-dimensional shape modeling of diamond abrasive grains measured by a scanning laser microscope. Key Engineering Materials, 238/239, 131-136(2003).

    [19] C LI, F H ZHANG, B B MENG et al. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceramics International, 43, 2981-2993(2017).

    [20] Z Z ZHANG, P YAO, J WANG et al. Nanomechanical characterization of RB-SiC ceramics based on nanoindentation and modelling of the ground surface roughness. Ceramics International, 46, 6243-6253(2020).

    [21] J Y FENG, Z P WAN, W WANG et al. Unique crack behaviors of glass BK7 occurred in successive double scratch under critical load of Median crack initiation. Journal of the European Ceramic Society, 40, 3279-3290(2020).

    [22] S W YOUN, C G KANG. Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (1 0 0) surface. Wear, 261, 328-337(2006).

    [23] W C OLIVER, G M PHARR. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. Journal of Materials Research, 19, 3-20(2004).

    [24] M R GE, H T ZHU, P Q GE et al. Investigation on residual scratch depth and material removal rate of scratching machining single crystal silicon with Berkovich indenter. Materials Science in Semiconductor Processing, 100, 98-105(2019).

    Mengran GE, Quanjing WANG, Zhenzhong ZHANG. Simplified calculation of indentation contact deformation of monocrystalline silicon[J]. Optics and Precision Engineering, 2022, 30(11): 1317
    Download Citation