• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 138 (2016)
Xiangang LUO*
Author Affiliations
  • State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics,Chinese Academy of Sciences, Chengdu 610209, China
  • show less
    DOI: 10.1007/s12200-016-0632-1 Cite this Article
    Xiangang LUO. Subwavelength electromagnetics[J]. Frontiers of Optoelectronics, 2016, 9(2): 138 Copy Citation Text show less
    References

    [1] Lorentz H A. Collected Papers. Hague, 1937

    [2] Jackson J D. Classical Electrodynamics.Hoboken: Wiley, 1999

    [3] Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section.USA: SciTech Publishing, 2004

    [4] Zhou B, Kane T J, Dixon G J, Byer R L. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Optics Letters, 1985, 10(2): 62–64

    [5] Gordon R G. Criteria for choosing transparent conductors. MRS Bulletin, 2000, 25(8): 52–57

    [6] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Reviews, 2010, 4(6): 795–808

    [7] De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films ACS Nano, 2010, 4(5): 2713–2720

    [8] Feynman R P. There’s plenty of room at the bottom. Engineering and Science, 1960, 23: 22–36

    [9] Brongersma M L. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178: 9–36

    [10] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-Uspekhi, 1968, 10(4): 509–514

    [11] Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776

    [12] Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47 (11): 2075–2084

    [13] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187

    [14] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79

    [15] Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    [16] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782

    [17] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980

    [18] Emerson D T. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2267–2273

    [19] Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881

    [20] Luo X. Principles of electromagnetic waves in metasurfaces. Science China-Physics, Mechanics & Astronomy, 2015, 58(9): 594201

    [21] Luo X, Pu M, Ma X, Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. International Journal of Antennas and Propagation, 2015, 16: 204127

    [22] Leonhardt U. Optical conformal mapping. Science, 2006, 312 (5781): 1777–1780

    [23] Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nature Materials, 2009, 8(7): 568–571

    [24] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R. Broadband ground-plane cloak. Science, 2009, 323(5912): 366–369

    [25] Gabrielli L H, Cardenas J, Poitras C B, Lipson M. Silicon nanostructure cloak operating at optical frequencies. Nature Photonics, 2009, 3(8): 461–463

    [26] Hashemi H, Zhang B, Joannopoulos J D, Johnson S G. Delaybandwidth and delay-loss limitations for cloaking of large objects. Physical Review Letters, 2010, 104(25): 253903

    [27] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Physical Review Letters, 2008, 101(20): 203901

    [28] Zigoneanu L, Popa B I, Cummer S A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials, 2014, 13(4): 352–355

    [29] Han T, Bai X, Gao D, Thong J T L, Li B, Qiu C W. Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014, 112(5): 054302

    [30] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349(6254): 1310–1314

    [31] Pu M, Zhao Z,Wang Y, Li X, Ma X, Hu C,Wang C, Huang C, Luo X. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Scientific Reports, 2015, 5: 9822

    [32] Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5: 15781

    [33] Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345

    [34] Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686

    [35] Jacob Z, Alekseyev L V, Narimanov E. Optical Hyperlens: farfield imaging beyond the diffraction limit. Optics Express, 2006, 14(18): 8247–8256

    [36] Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Optics Letters, 2007, 32(23): 3432–3434

    [37] Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957

    [38] Liang G,Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256

    [39] Engheta N. Thin absorbing screens using metamaterial surfaces. IEEE Antennas and Propagation Society International Symposium, 2002, 2: 392–395

    [40] Sievenpiper D F, Schaffner J H, Song H J, Loo R Y, Tangonan G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2713–2722

    [41] Munk B A. Frequency Selective Surfaces. New York: Wiley, 2000

    [42] Senior T. Approximate boundary conditions. IEEE Transactions on Antennas and Propagation, 1981, 29(5): 826–829

    [43] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014, 8(12): 889–898

    [44] Salisbury W W. Absorbent body for electromagnetic waves. United States Patent, 1952, 2599944

    [45] Sievenpiper D F. High-impedance electromagnetic surfaces. Dissertation for the Doctoral Degree. Los Angeles: University of California, 1999

    [46] Pu M, Feng Q, Hu C, Luo X. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7(4): 733–738

    [47] Sievenpiper D, Zhang L, Broas R, Alexopolous N, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059–2074

    [48] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

    [49] Pu M, Hu C,Wang M, Huang C, Zhao Z,Wang C, Feng Q, Luo X. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Optics Express, 2011, 19(18): 17413–17420

    [50] Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce J M, Güney D . Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Scientific Reports, 2014, 4: 4901

    [51] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104

    [52] Feng Q, Pu M, Hu C, Luo X. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Optics Letters, 2012, 37(11): 2133–2135

    [53] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230–1234

    [54] Brewitt-Taylor C R. Limitation on the bandwidth of artificial perfect magnetic conductor surfaces. IET Microwaves, Antennas & Propagation, 2007, 1(1): 255–260

    [55] Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express, 2012, 20(3): 2246–2254

    [56] Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(22): 220301

    [57] Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W. Perfect electromagnetic absorption at one-atom-thick scale. Applied Physics Letters, 2015, 107(18): 181112

    [58] Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483

    [59] Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 2007, 317(5845): 1698–1702

    [60] Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Physical Review Letters, 2002, 89(21): 213902

    [61] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J, Ebbesen T W. Beaming light from a subwavelength aperture. Science, 2002, 297(5582): 820–822

    [62] Xu H, Zhao Z, Lv Y, Du C, Luo X. Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna. International Journal of Infrared and Millimeter Waves, 2008, 29 (5): 493–498

    [63] Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nature Materials, 2011, 10(3): 216–222

    [64] Wang M, Huang C, Pu M, Luo X. Reducing side lobe level of antenna using frequency selective surface superstrate. Microwave and Optical Technology Letters, 2015, 57(8): 1971–1975

    [65] Ma X, Pan W, Huang C, Pu M, Wang Y, Zhao B, Cui J, Wang C, Luo X. An active metamaterial for polarization manipulating. Advanced Optical Materials, 2014, 2(10): 945–949

    [66] Ma X, Huang C, Pan W, Zhao B, Cui J, Luo X. A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 2307–2311

    [67] Pan W, Huang C, Chen P, Ma X, Hu C, Luo X. A low-RCS and high-gain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 945–949

    [68] Pan W, Huang C, Chen P, Pu M, Ma X, Luo X. A beam steering horn antenna using active frequency selective surface. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218– 6223

    [69] Huang C, Pan W, Ma X, Zhao B, Cui J, Luo X. Using reconfigurable transmitarray to achieve beam-steering and polar- ization manipulation applications. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810

    [70] Young L, Robinson L A, Hacking C. Meander-line polarizer. IEEE Transactions on Antennas and Propagation, 1973, 21(3): 376–378

    [71] Flanders D C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Applied Physics Letters, 1983, 42(6): 492– 494

    [72] Ma X, Huang C, Pu M, Wang Y, Zhao Z, Wang C, Luo X. Dualband asymmetry chiral metamaterial based on planar spiral structure. Applied Physics Letters, 2012, 101(16): 161901

    [73] Huang C, Ma X, Pu M, Yi G, Wang Y, Luo X. Dual-band 90° polarization rotator using twisted split ring resonators array. Optics Communications, 2013, 291: 345–348

    [74] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908

    [75] Pors A, Nielsen M G, Valle G D, Willatzen M, Albrektsen O, Bozhevolnyi S I. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Letters, 2011, 36(9): 1626–1628

    [76] Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Applied Physics Letters, 2013, 102(13): 131906

    [77] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307

    [78] Guo Y,Wang Y, Pu M, Zhao Z,Wu X, Ma X,Wang C, Yan L, Luo X. Dispersion management of anisotropic metamirror for superoctave bandwidth polarization conversion. Scientific Reports, 2015, 5: 8434

    [79] Cardano F, Marrucci L. Spin-orbit photonics. Nature Photonics, 2015, 9(12): 776–778

    [80] Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5: 10365

    [81] Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1984, 392(1802): 45–57

    [82] Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Applied Physics Letters, 2003, 82(3): 328–330

    [83] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    [84] Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427

    [85] Pu M, Li X, Ma X,Wang Y, Zhao Z,Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances, 2015, 1(9): e1500396

    [86] Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X. Quasicontinuous metasurface for ultra-broadband and polarizationcontrolled electromagnetic beam deflection. Scientific Reports, 2015, 5: 17733

    [87] Li X, Pu M, Zhao Z, Ma X, Jin J,Wang Y, Gao P, Luo X. Catenary nanostructures as compact Bessel beam generators. Scientific Reports, 2016, 6: 20524

    [88] Wang Y, Pu M, Hu C, Zhao Z, Wang C, Luo X. Dynamic manipulation of polarization states using anisotropic meta-surface. Optics Communications, 2014, 319(0): 14–16

    [89] Shi J, Fang X, Rogers E T F, Plum E, MacDonald K F, Zheludev N I. Coherent control of Snell’s law at metasurfaces. Optics Express, 2014, 22(17): 21051–21060

    [90] Li X, Pu M,Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P,Wang C, Luo X. Dynamic control of the extraordinary optical scattering in semi-continuous two-dimensional metamaterials. Advanced Optical Materials, 2016, doi: 10.1002/adom.201500713

    [91] Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007

    [92] Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics Journal, 2012, 4(2): 590–595

    [93] Polo J A Jr, Lakhtakia A. Surface electromagnetic waves: a review. Laser & Photonics Reviews, 2011, 5(2): 234–246

    [94] Zhao Z, Luo Y, Zhang W,Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum offaxis illumination. Scientific Reports, 2015, 5: 15320

    [95] Yao H, Yu G, Yan P, Chen X, Luo X. Patterining sub 100 nm isolated patterns with 436 nm lithography. In: Proceedings of 2003 International Microprocesses and Nanotechnology Conference. 2003, 7947638

    [96] Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Applied Physics Letters, 2004, 84 (23): 4780–4782

    [97] Luo X, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance. Optics Express, 2004, 12 (14): 3055–3065

    [98] Wang C, Gao P, Zhao Z, Yao N, Wang Y, Liu L, Liu K, Luo X. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Optics Express, 2013, 21(18): 20683–20691

    [99] Luo J, Zeng B, Wang C, Gao P, Liu K, Pu M, Jin J, Zhao Z, Li X, Yu H, Luo X. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812

    [100] Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Applied Physics Letters, 2015, 106(9): 093110

    [101] Coles J A. Some reflective properties of the tapetum lucidum of the cat’s eye. The Journal of Physiology, 1971, 212(2): 393–409

    [102] Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X. Achromatic flat optical components via compensation between structure and material dispersions. Scientific Reports, 2016, 6: 19885

    [103] Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser & Photonics Reviews, 2015, 9(6): 713–719

    [104] Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X. Super-resolution optical telescopes with local light diffraction shrinkage. Scientific Reports, 2015, 5: 18485

    [105] Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y. Twosurface- plasmon-polariton-absorption based nanolithography. Applied Physics Letters, 2013, 102(6): 063113

    [106] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters, 2009, 95 (4): 041106

    [107] Sheng C, Liu H, Wang Y, Zhu S N, Genov D A. Trapping light by mimicking gravitational lensing. Nature Photonics, 2013, 7(11): 902–906

    [108] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673

    [109] Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298

    [110] Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866–1878

    [111] Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9(9): 707–715

    [112] Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Optics Express, 2013, 21(1): 992–1001

    [113] Pu M, Song M, Yu H, Hu C, Wang M, Wu X, Luo J, Zhang Z, Luo X. Fano resonance induced by mode coupling in all-dielectric nanorod array. Applied Physics Express, 2014, 7(3): 032002

    [114] Chen S, Jin S, Gordon R. Subdiffraction focusing enabled by a fano resonance. Physical Review X, 2014, 4(3): 031021

    [115] Song M, Wang C, Zhao Z, Pu M, Liu L, Zhang W, Yu H, Luo X. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale, 2016, 8(3): 1635–1641

    [116] McPhedran R C, Parker A R. Biomimetics: lessons on optics from nature’s school. Physics Today, 2015, 68(6): 32–37

    Xiangang LUO. Subwavelength electromagnetics[J]. Frontiers of Optoelectronics, 2016, 9(2): 138
    Download Citation