• Nano-Micro Letters
  • Vol. 17, Issue 1, 042 (2025)
Hao Yin1, Yanting Li1, Zhiying Tian2, Qichao Li1,*..., Chenhui Jiang1, Enfu Liang3 and Yiping Guo1,**|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • 2Beijing Vacuum Electronics Research Institute, Beijing, 100015, People’s Republic of China
  • 3Fundamental Science On Vibration, Shock and Noise Laboratory, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01539-6 Cite this Article
    Hao Yin, Yanting Li, Zhiying Tian, Qichao Li, Chenhui Jiang, Enfu Liang, Yiping Guo. Ultra-High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception[J]. Nano-Micro Letters, 2025, 17(1): 042 Copy Citation Text show less
    References

    [1] S. Ota, A. Ando, D. Chiba, A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 1, 124–129 (2018).

    [2] M. Zarei, G. Lee, S.G. Lee, K. Cho, Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human-machine interfaces. Adv. Mater. 35, e2203193 (2023).

    [3] Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022).

    [4] Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35, e2300855 (2023).

    [5] H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24, 4002–4011 (2024).

    [6] A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023).

    [7] J. Franco, A. Aris, B. Canberk, A.S. Uluagac, A survey of honeypots and honeynets for Internet of Things, industrial Internet of Things, and cyber-physical systems. IEEE Commun. Surv. Tutor. 23, 2351–2383 (2021).

    [8] D. Melancon, B. Gorissen, C.J. García-Mora, C. Hoberman, K. Bertoldi, Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).

    [9] F. Shahzad, W. Jamshed, S.U.D. Sathyanarayanan, A. Aissa, P. Madheshwaran et al., Thermal analysis on Darcy-Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: an application to solar aircraft. Int. J. Energy Res. 45, 20812–20834 (2021).

    [10] J. Hjort, D. Streletskiy, G. Doré, Q. Wu, K. Bjella et al., Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3, 24–38 (2022).

    [11] Q. Zhang, K. Barri, S.R. Kari, Z.L. Wang, A.H. Alavi, Multifunctional triboelectric nanogenerator-enabled structural elements for next generation civil infrastructure monitoring systems. Adv. Funct. Mater. 31, 2105825 (2021).

    [12] Z. Wang, X. Wang, M. Li, Y. Gao, Z. Hu et al., Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv. Mater. 28, 9370–9377 (2016).

    [13] Z. Wang, P. Bi, Y. Yang, H. Ma, Y. Lan et al., Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 80, 105559 (2021).

    [14] C. Jiang, J. Liu, L. Yang, J. Gong, H. Wei et al., A flexible artificial sensory nerve enabled by nanoparticle-assembled synaptic devices for neuromorphic tactile recognition. Adv. Sci. 9, e2106124 (2022).

    [15] H. Zhao, Y. Zhang, L. Han, W. Qian, J. Wang et al., Intelligent recognition using ultralight multifunctional nano-layered carbon aerogel sensors with human-like tactile perception. Nano-Micro Lett. 16, 11 (2023).

    [16] X. Huang, W. Guo, S. Liu, Y. Li, Y. Qiu et al., Flexible mechanical metamaterials enabled electronic skin for real-time detection of unstable grasping in robotic manipulation. Adv. Funct. Mater. 32, 2270131 (2022).

    [17] T.O. Fossum, G.M. Fragoso, E.J. Davies, J.E. Ullgren, R. Mendes et al., Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Sci. Robot 4, eaav3041 (2019).

    [18] T. Reichhardt, NASA seeks robotic rescuers to give Hubble extra lease of life. Nature 428, 353 (2004).

    [19] X. Cao, Y. Xiong, J. Sun, X. Zhu, Q. Sun et al., Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 31, 2102983 (2021).

    [20] Y.H. Jung, S.K. Hong, H.S. Wang, J.H. Han, T.X. Pham et al., Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 32, e1904020 (2020).

    [21] N. Jia, Q. Li, C. Li, H. Du, X. Gao et al., A wireless ultrasound energy harvester based on flexible relaxor ferroelectric crystal composite arrays for implanted bio-electronics. Energy Environ. Sci. 17, 1457–1467 (2024).

    [22] N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski et al., New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 12, 1143–1176 (2019).

    [23] P.C. Sherrell, M. Fronzi, N.A. Shepelin, A. Corletto, D.A. Winkler et al., A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 51, 650–671 (2022).

    [24] D. Yao, H. Cui, R. Hensleigh, P. Smith, S. Alford et al., Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Adv. Funct. Mater. 29, 1903866 (2019).

    [25] B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11, 92 (2019).

    [26] S. An, H.S. Jo, G. Li, E. Samuel, S.S. Yoon et al., Sustainable nanotextured wave energy harvester based on ferroelectric fatigue-free and flexoelectricity-enhanced piezoelectric P(VDF-TrFE) nanofibers with BaSrTiO3 nanoparticles. Adv. Funct. Mater. 30, 2001150 (2020).

    [27] Y. Jiang, S. Shiono, H. Hamada, T. Fujita, D. Zhang et al., Reactive ion etching of poly(vinylidene fluoride-trifluoroethylene) copolymer for flexible piezoelectric devices. Chin. Sci. Bull. 58, 2091–2094 (2013).

    [28] R.A. Surmenev, T. Orlova, R.V. Chernozem, A.A. Ivanova, A. Bartasyte et al., Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62, 475–506 (2019).

    [29] T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52, 288–296 (2019).

    [30] L. Zhang, J. Pan, Z. Zhang, H. Wu, N. Yao et al., Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron. Adv. 3, 19002201–19002207 (2020).

    [31] J. Zhang, H. Yao, J. Mo, S. Chen, Y. Xie et al., Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 13, 5076 (2022).

    [32] Z. Xiang, L. Li, Z. Lu, X. Yu, Y. Cao et al., High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods. Matter 6, 554–569 (2023).

    [33] H. Yin, Y. Guan, Y. Li, Z. Zheng, Y. Guo, Modulation of piezoelectricity and mechanical strength in piezoelectric composites based on N0 5B0 51T-BNT nanocubes towards human-machine interfaces. Nano Energy 118, 109044 (2023).

    [34] H. Cheng, P. Jiao, J. Wang, M. Qing, Y. Deng et al., Tunable and parabolic piezoelectricity in Hafnia under epitaxial strain. Nat. Commun. 15, 394 (2024).

    [35] J. He, J. Feng, B. Huang, W. Duan, Z. Chen et al., Multi-directional strain sensor based on carbon nanotube array for human motion monitoring and gesture recognition. Carbon 226, 119201 (2024).

    [36] R. Yang, H. Song, Z. Zhou, S. Yang, X. Tang et al., Ultra-sensitive, multi-directional flexible strain sensors based on an mxene film with periodic wrinkles. ACS Appl. Mater. Interfaces 15, 8345–8354 (2023).

    [37] T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li et al., The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017).

    [38] P. Li, J. Zhai, B. Shen, S. Zhang, X. Li et al., Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171 (2018).

    [39] D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13, 117 (2021).

    [40] N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14, 7121 (2023).

    [41] C.S. Litteken, S. Strohband, R.H. Dauskardt, Residual stress effects on plastic deformation and interfacial fracture in thin-film structures. Acta Mater. 53, 1955–1961 (2005).

    [42] J. Guo, C. Shang, S. Gao, Y. Zhang, B. Fu et al., Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception. Adv. Mater. Technol. 8, 2201506 (2023).

    [43] S. Yun, S. Park, B. Park, Y. Kim, S.K. Park et al., Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv. Mater. 26, 4474–4480 (2014).

    [44] J. Liu, X. Zhang, J. Liu, X. Liu, C. Zhang, 3D printing of anisotropic piezoresistive pressure sensors for directional force perception. Adv. Sci. 11, e2309607 (2024).

    [45] Y. Hong, B. Wang, W. Lin, L. Jin, S. Liu et al., Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci. Adv. 7, eabf0795 (2021).

    [46] W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34, 2312885 (2024).

    [47] Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device. Adv. Funct. Mater. 34, 2402356 (2024).

    [48] L. Lu, B. Yang, Y. Zhai, J. Liu, Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 76, 104966 (2020).

    [49] G.-T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek et al., Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016).

    [50] K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu et al., Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514–2520 (2014).

    [51] L. Daelemans, J. Faes, S. Allaoui, G. Hivet, M. Dierick et al., Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Compos. Sci. Technol. 137, 177–187 (2016).

    [52] L. Mercedes, G. Castellazzi, E. Bernat-Maso, L. Gil, Matrix and fabric contribution on the tensile behaviour of fabric reinforced cementitious matrix composites. Constr. Build. Mater. 363, 129693 (2023).

    [53] W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev et al., Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022).

    [54] H. Liu, X. Lin, S. Zhang, Y. Huan, S. Huang et al., Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 8, 19631–19640 (2020).

    [55] X. Wang, W.-Z. Song, M.-H. You, J. Zhang, M. Yu et al., Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 12, 8588–8596 (2018).

    [56] X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32, 2200589 (2022).

    [57] G. Zhang, P. Zhao, X. Zhang, K. Han, T. Zhao et al., Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy Environ. Sci. 11, 2046–2056 (2018).

    [58] Y. Liu, L. Ding, L. Dai, X. Gao, H. Wu et al., All-ceramic flexible piezoelectric energy harvester. Adv. Funct. Mater. 32, 2209297 (2022).

    [59] L. Pan, Y. Wang, Q. Jin, Z. Hu, Z. Zhou et al., Self-poled PVDF/recycled cellulose composite fibers utilizing cellulose nanocrystals to induce PVDF β-phase formation through wet-spinning as a flexible fabric piezoelectric sensor. Chem. Eng. J. 479, 147742 (2024).

    [60] P. Zhou, Z. Zheng, B. Wang, Y. Guo, Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO2 nanocubes on glass fiber fabric. Nano Energy 99, 107400 (2022).

    [61] J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P.M. Weaver et al., Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 6, 3035 (2013).

    [62] J. Chen, N. Nabulsi, W. Wang, J.Y. Kim, M.-K. Kwon et al., Output characteristics of thin-film flexible piezoelectric generators: a numerical and experimental investigation. Appl. Energy 255, 113856 (2019).

    Hao Yin, Yanting Li, Zhiying Tian, Qichao Li, Chenhui Jiang, Enfu Liang, Yiping Guo. Ultra-High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception[J]. Nano-Micro Letters, 2025, 17(1): 042
    Download Citation