[1] A. Tennant, B. Chambers. Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface. Smart Mater. Struct., 13, 122(2003).
[2] C. Huang, J. Yang, C. Ji. Graphene-driven metadevice for active microwave camouflage with high-efficiency transmission window. Small Methods, 5, 2000918(2021).
[3] C. Huang, C. Ji, B. Zhao. Multifunctional and tunable radar absorber based on graphene-integrated active metasurface. Adv. Mater. Technol., 6, 2001050(2021).
[4] H. N. Ji, D. Q. Liu, H. F. Cheng. Infrared optical modulation characteristics of W-doped VO2(M) nanoparticles in the MWIR and LWIR regions. Mater. Sci. Semicond. Process., 119, 105141(2020).
[5] K. Tang, K. Dong, J. Li. Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 374, 1504-1509(2021).
[6] S. Wang, T. Jiang, Y. Meng. Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 374, 1501-1504(2021).
[7] O. Balci, E. O. Polat, N. Kakenov. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun., 6, 6628(2015).
[8] M. Y. Li, D. Q. Liu, H. F. Cheng. Manipulating metals for adaptive thermal camouflage. Sci. Adv., 6, eaba3494(2020).
[9] M. Y. Li, D. Q. Liu, H. F. Cheng. Graphene-based reversible metal electrodeposition for dynamic infrared modulation. J. Mater. Chem. C, 8, 8538-8545(2020).
[10] M. S. Ergoktas, G. Bakan, E. Kovalska. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics, 15, 493-498(2021).
[11] J. B. Yan, Y. H. Cai, H. W. Zhang. Rapid thermochromic and highly thermally conductive nanocomposite based on silicone rubber for temperature visualization thermal management in electronic devices. ACS Appl. Mater. Interfaces, 16, 7883-7893(2024).
[12] C. Zhang. Research of Stealth Technology Based on Metamaterial(2019).
[13] J. Z. Li, H. Tian, H. T. Liu. Design and verification of a radar- infrared stealth-compatible material based on metamaterial. J. Funct. Mater., 48, 5137-5143(2017).
[14] Y. Pang, Y. Li, M. Yan. Hybrid metasurfaces for microwave reflection and infrared emission reduction. Opt. Express, 26, 11950-11958(2018).
[15] C. L. Xu, B. K. Wang, M. B. Yan. An optically transparent sandwich structure for radar-infrared bi-stealth. Infrared Phys. Technol., 105, 103108(2020).
[16] Z. Meng, C. Tian, C. Xu. Optically transparent coding metasurface with simultaneously low infrared emissivity and microwave scattering reduction. Opt. Express, 28, 27774-27784(2020).
[17] T. Liu, Y. Meng, H. Ma. Simultaneous reduction of microwave reflection and infrared emission enabled by a phase gradient metasurface. Opt. Express, 29, 35891-35899(2021).
[18] Y. Cui, J. Wang, H. T. Sun. Visible transparent wideband microwave meta-absorber with designable digital infrared camouflage. Adv. Opt. Mater., 12, 2301712(2024).
[19] H. T. Sun, J. Wang, R. C. Zhu. Noninvasive inset-integrated meta-atom for achieving single-layer metasurface simultaneously with coded microwave reflectivity and digitalized infrared emissivity. Nanophotonics, 13, 3113-3122(2024).
[20] Z. Q. Gao, C. L. Xu, R. C. Zhu. Multifunctional anisotropic coding metasurface with low emissivity and high optical transmittance. Infrared Phys. Technol., 117, 103845(2021).
[21] J. L. Shen, Y. B. Li, H. Li. Arbitrarily polarized retro-reflections by anisotropic digital coding metasurface. J. Phys. D, 52, 505401(2019).
[22] C. A. Balanis. Antenna Theory: Analysis and Design(2005).
[23] T. J. Cui, M. Q. Qi, X. Wan. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).
[24] H. Tian, H. T. Liu, H. F. Cheng. A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization. Chin. Phys. B, 23, 025201(2013).
[25] Y. Shen, J. Q. Zhang, L. H. Shen. Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice. Opt. Express, 26, 28363-28375(2018).