• Matter and Radiation at Extremes
  • Vol. 3, Issue 3, 104 (2018)
Xiaojia Li1, Tingting Xiao1, Fengwei Chen1, Yingjuan Zhang1, Xiaofei Li2, and Weidong Wu1、3、4、*
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 2Institute of Applied Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3Science and Technology on Plasma Physics Laboratory, Mianyang 621900, China
  • 4IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1016/j.mre.2018.01.004 Cite this Article
    Xiaojia Li, Tingting Xiao, Fengwei Chen, Yingjuan Zhang, Xiaofei Li, Weidong Wu. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets[J]. Matter and Radiation at Extremes, 2018, 3(3): 104 Copy Citation Text show less
    References

    [1] R. Betti, V.N. Goncharov, R.L. McCrory, P. Sorotokin, C.P. Verdon, Selfconsistent stability analysis of ablation fronts in inertial confinement fusion, Phys. Plasmas 3 (1996) 2122.

    [2] V.N. Goncharov, R. Betti, R.L. McCrory, P. Sorotokin, C.P. Verdon, Selfconsistent stability analysis of ablation fronts with large Froude numbers, Phys. Plasmas 3 (1996) 1402.

    [3] K. Lan, J. Liu, X.T. He, W.D. Zheng, D.X. Lai, High flux symmetry of the spherical hohlraum with octahedral 6 LEHs at the hohlraum-tocapsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.

    [4] W. Huo, Z. Li, Y. Chen, X. Xie, K. Lan, et al., First investigation on the radiation field of the spherical hohlraum, Phys. Rev. Lett. 117 (2016) 025002.

    [5] C.R. Weber, D.T. Casey, D.S. Clark, B.A. Hammel, A. MacPhee, et al., Improving ICF implosion performance with alternative capsule supports, Phys. Plasmas 24 (2017) 056302.

    [6] P.E. Coyle (Ed.), Laser Program Annual Report, vol. 4, 1976, p. 181.

    [7] D.A. Glocker, A proposed design for multishell cryogenic laser fusion targets using superconducting levitation, Appl. Phys. Lett. 39 (1981) 478.

    [8] Y. Ishigaki, H. Ueda, K. Agatsuma, A. Ishiyama, Accurate position control of active magnetic levitation using sphere-shaped HTS bulk for inertial nuclear fusion, IEEE Trans. Appl. Supercond. 19 (2009) 3.

    [9] T. Wang, H. Ueda, K. Agatsuma, A. Ishiyama, Evaluation of positional stability in active magnetic levitation using spherical HTS bulk for inertial nuclear fusion, IEEE Trans. Appl. Supercond. 21 (2011) 3.

    [10] H. Yoshida, K. Katakami, Y. Sakagami, Magnetic suspension of a pellet for inertial confinement fusion, Laser Part. Beams 11 (1993) 455.

    [11] E.R. Koresheva, I.V. Aleksandrova, O.M. Ivanenko, V.A. Kalabukhov, E.L. Koshelev, et al., HTSC maglev systems for IFE target transport applications, J. Russ. Laser Res. 35 (2014) 151.

    [12] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410 (2001) 63.

    [13] M. Eisterer, Magnetic properties and critical currents of MgB2, Supercond. Sci. Technol. 20 (2007) 47. Topical Review.

    [14] J. Gu, Z. Dai, S. Zou, W. Ye, W. Zheng, et al., Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions, Matter Radiat. Extrem. 2 (2017) 9.

    [15] S.P. Regan, R. Epstein, B.A. Hammel, L.J. Suter, H.A. Scott, et al., Hotspot mix in ignition-scale inertial confinement fusion targets, Phys. Rev. Lett. 111 (2013) 045001.

    CLP Journals

    [1] Shasha Gao, Xiaojun Wu, Zhibing He, Xiaoshan He, Tao Wang, Fanghua Zhu, Zhanwen Zhang. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001

    Xiaojia Li, Tingting Xiao, Fengwei Chen, Yingjuan Zhang, Xiaofei Li, Weidong Wu. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets[J]. Matter and Radiation at Extremes, 2018, 3(3): 104
    Download Citation