• Photonics Research
  • Vol. 12, Issue 11, 2741 (2024)
Haosen Shi1,†, Bingkun Lu2,3,4,†, Huaqing Zhang5,6,†, Ruming Hu5,6,7..., Yuan Qian5,6,7, Yao Huang5,6, Tao Yang2,4, Yuan Yao1, Hongfu Yu1, Zhanjun Fang2,4, Kelin Gao5,6, Hua Guan5,6,8,9,*, Yige Lin2,4,10,*, Yanyi Jiang1,11,* and Longsheng Ma1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100029, China
  • 3Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 4Key Laboratory of State Administration for Market Regulation (Time Frequency and Gravity Primary Standard), Beijing 100029, China
  • 5Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 6Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 7University of Chinese Academy of Sciences, Beijing 100049, China
  • 8Wuhan Institute of Quantum Technology, Wuhan 430206, China
  • 9e-mail: guanhua@apm.ac.cn
  • 10e-mail: linyige@nim.ac.cn
  • 11e-mail: yyjiang@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.539892 Cite this Article Set citation alerts
    Haosen Shi, Bingkun Lu, Huaqing Zhang, Ruming Hu, Yuan Qian, Yao Huang, Tao Yang, Yuan Yao, Hongfu Yu, Zhanjun Fang, Kelin Gao, Hua Guan, Yige Lin, Yanyi Jiang, Longsheng Ma, "Reducing statistical noise in frequency ratio measurement between Ca+ and Sr optical clocks with a frequency-synthesized local oscillator from a Sr optical clock," Photonics Res. 12, 2741 (2024) Copy Citation Text show less
    References

    [1] M. Schioppo, R. C. Brown, W. F. McGrew. Ultrastable optical clock with two cold-atom ensembles. Nat. Photonics, 11, 48-52(2017).

    [2] W. F. McGrew, X. Zhang, R. J. Fasano. Atomic clock performance enabling geodesy below the centimetre level. Nature, 564, 87-90(2018).

    [3] E. Oelker, R. B. Hutson, C. J. Kennedy. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics, 13, 714-719(2019).

    [4] T. Bothwell, D. Kedar, E. Oelker. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia, 56, 065004(2019).

    [5] B. Bloom, T. Nicholson, J. Williams. An optical lattice clock with accuracy and stability at the 10−18 level. Nature, 506, 71-75(2014).

    [6] S. M. Brewer, J.-S. Chen, A. M. Hankin. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett., 123, 033201(2019).

    [7] Y. Huang, B. Zhang, M. Zeng. Liquid-nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3 × 10−18. Phys. Rev. Appl., 17, 034041(2022).

    [8] A. Aeppli, K. Kim, W. Warfield. Clock with 8 × 10−19 systematic uncertainty. Phys. Rev. Lett., 133, 023401(2024).

    [9] N. Dimarcq, M. Gertsvolf, G. Mileti. Roadmap towards the redefinition of the second. Metrologia, 61, 012001(2024).

    [10] A. D. Ludlow, M. M. Boyd, J. Ye. Optical atomic clocks. Rev. Mod. Phys., 87, 637-701(2015).

    [11] M. S. Safronova, D. Budker, D. DeMille. Search for new physics with atoms and molecules. Rev. Mod. Phys., 90, 025008(2018).

    [12] P. Wcisło, P. Ablewski, K. Beloy. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv., 4, eaau4869(2018).

    [13] R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett., 113, 210801(2014).

    [14] N. Huntemann, B. Lipphardt, C. Tamm. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks. Phys. Rev. Lett., 113, 210802(2014).

    [15] J. Grotti, S. Koller, S. Vogt. Geodesy and metrology with a transportable optical clock. Nat. Phys., 14, 437-441(2018).

    [16] H. Leopardi, J. Davila-Rodriguez, F. Quinlan. Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability. Optica, 4, 879-885(2017).

    [17] N. Ohmae, N. Kuse, M. E. Fermann. All-polarization-maintaining, single-port Er:fiber comb for high-stability comparison of optical lattice clocks. Appl. Phys. Express, 10, 062503(2017).

    [18] H. Shi, Y. Jiang, Y. Yao. Optical frequency divider: capable of measuring optical frequency ratio in 22 digits. APL Photonics, 8, 100802(2023).

    [19] W. M. Itano, J. C. Bergquist, J. J. Bollinger. Quantum projection noise: Population fluctuations in two-level systems. Phys. Rev. A, 47, 3554-3570(1993).

    [20] G. J. Dick. Local oscillator induced instabilities in trapped ion frequency standards. Proceedings of the 19th Annual Precise Time and Time Interval Systems and Applications Meeting, 133-147(1989).

    [21] N. Huntemann, C. Sanner, B. Lipphardt. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett., 116, 063001(2016).

    [22] C. Sanner, N. Huntemann, R. Lange. Optical clock comparison for Lorentz symmetry testing. Nature, 567, 204-208(2019).

    [23] D. G. Matei, T. Legero, S. Häfner. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).

    [24] Boulder Atomic. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591, 564-569(2021).

    [25] S. Dörscher, N. Huntemann, R. Schwarz. Optical frequency ratio of a 171Yb+ single-ion clock and a 87Sr lattice clock. Metrologia, 58, 015005(2021).

    [26] R. Kohlhaas, A. Bertoldi, E. Cantin. Phase locking a clock oscillator to a coherent atomic ensemble. Phys. Rev. X, 5, 021011(2015).

    [27] J. Borregaard, A. S. Sørensen. Efficient atomic clocks operated with several atomic ensembles. Phys. Rev. Lett., 111, 090802(2013).

    [28] T. Rosenband, D. R. Leibrandt. Exponential scaling of clock stability with atom number. arXiv(2013).

    [29] T. L. Nicholson, M. J. Martin, J. R. Williams. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett., 109, 230801(2012).

    [30] M. Takamoto, T. Takano, H. Katori. Frequency comparison of optical lattice clocks beyond the dick limit. Nat. Photonics, 5, 288-292(2011).

    [31] N. Nemitz, T. Ohkubo, M. Takamoto. Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time. Nat. Photonics, 10, 258-261(2016).

    [32] E. R. Clements, M. E. Kim, K. Cui. Lifetime-limited interrogation of two independent 27Al+ clocks using correlation spectroscopy. Phys. Rev. Lett., 125, 243602(2020).

    [33] D. B. Hume, D. R. Leibrandt. Probing beyond the laser coherence time in optical clock comparisons. Phys. Rev. A, 93, 032138(2016).

    [34] X. Zheng, J. Dolde, V. Lochab. Differential clock comparisons with a multiplexed optical lattice clock. Nature, 602, 425-430(2022).

    [35] M. E. Kim, W. F. McGrew, N. V. Nardelli. Improved interspecies optical clock comparisons through differential spectroscopy. Nat. Phys., 19, 25-29(2023).

    [36] H. Zhang, Y. Huang, B. Zhang. Absolute frequency measurements with a robust, transportable 40Ca+ optical clock. Metrologia, 60, 035004(2023).

    [37] B.-K. Lu, Z. Sun, T. Yang. Improved evaluation of BBR and collisional frequency shifts of NIM-Sr2 with 7.2 × 10−18 total uncertainty. Chin. Phys. Lett., 39, 080601(2022).

    [38] Bureau International. Recommended values of standard frequencies.

    [39] T. Hosoya, M. Miranda, R. Inoue. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms. Rev. Sci. Instrum., 86, 073110(2015).

    [40] G. Yang, H. Shi, Y. Yao. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser. Chin. Opt. Lett., 19, 121405(2021).

    [41] H. Telle, B. Lipphardt, J. Stenger. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B, 74, 1-6(2002).

    [42] E. Peik, T. Schneider, C. Tamm. Laser frequency stabilization to a single ion. J. Phys. B, 39, 145(2005).

    [43] M. Zeng, Z. Ma, R. Hu. A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock. Chin. Phys. B, 32, 110704(2023).

    Haosen Shi, Bingkun Lu, Huaqing Zhang, Ruming Hu, Yuan Qian, Yao Huang, Tao Yang, Yuan Yao, Hongfu Yu, Zhanjun Fang, Kelin Gao, Hua Guan, Yige Lin, Yanyi Jiang, Longsheng Ma, "Reducing statistical noise in frequency ratio measurement between Ca+ and Sr optical clocks with a frequency-synthesized local oscillator from a Sr optical clock," Photonics Res. 12, 2741 (2024)
    Download Citation