• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036015 (2025)
Anne Nguyen1, Enrique Garcia-Caurel2, and Benjamin Vest1,*
Author Affiliations
  • 1Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
  • 2Institut Polytechnique de Paris, Ecole Polytechnique, CNRS, LPICM, Palaiseau, France
  • show less
    DOI: 10.1117/1.APN.4.3.036015 Cite this Article Set citation alerts
    Anne Nguyen, Enrique Garcia-Caurel, Benjamin Vest, "Characterizing thermal emission polarization with a mid-wave infrared broadband polarization state analyzer between 2.5 and 5 μm," Adv. Photon. Nexus 4, 036015 (2025) Copy Citation Text show less
    References

    [1] J.-J. Greffet et al. Coherent emission of light by thermal sources. Nature, 416, 61-64(2002). https://doi.org/10.1038/416061a

    [2] D. Costantini et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl., 4, 014023(2015). https://doi.org/10.1103/PhysRevApplied.4.014023

    [3] R. Duggan, Y. Ra’di, A. Alù. Temporally and spatially coherent emission from thermal embedded eigenstates. ACS Photonics, 6, 2949-2956(2019). https://doi.org/10.1021/acsphotonics.9b01131

    [4] M. He et al. Deterministic inverse design of tamm plasmon thermal emitters with multi-resonant control. Nat. Mater., 20, 1663-1669(2021). https://doi.org/10.1038/s41563-021-01094-0

    [5] A. C. Overvig, S. A. Mann, A. Alù. Thermal metasurfaces: complete emission control by combining local and nonlocal light-matter interactions. Phys. Rev. X, 11, 021050(2021). https://doi.org/10.1103/PhysRevX.11.021050

    [6] B. T. Draine. On far-infrared and submillimeter circular polarization. Astrophys. J., 926, 90(2022). https://doi.org/10.3847/1538-4357/ac3977

    [7] N. J. Greenfield. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 1, 2876-2890(2006). https://doi.org/10.1038/nprot.2006.202

    [8] M. F. G. Wood, D. Côté, I. A. Vitkin. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media. J. Biomed. Opt., 13, 044037(2008). https://doi.org/10.1117/1.2968198

    [9] J. D. van der Laan et al. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths. Appl. Opt., 54, 2266-2274(2015). https://doi.org/10.1364/AO.54.002266

    [10] X. Wang et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv., 9, eade4203(2023). https://doi.org/10.1126/sciadv.ade4203

    [11] A. Nguyen et al. Large circular dichroism in the emission from an incandescent metasurface. Optica, 10, 232-238(2023). https://doi.org/10.1364/OPTICA.480292

    [12] J. R. Nolen et al. Local control of polarization and geometric phase in thermal metasurfaces. Nat. Nanotechnol., 19, 1627-1634(2024). https://doi.org/10.1038/s41565-024-01763-6

    [13] D. S. Sabatke et al. Optimization of retardance for a complete Stokes polarimeter. Opt. Lett., 25, 802(2000). https://doi.org/10.1364/OL.25.000802

    [14] M. R. Foreman, A. Favaro, A. Aiello. Optimal frames for polarization state reconstruction. Phys. Rev. Lett., 115, 263901(2015). https://doi.org/10.1103/PhysRevLett.115.263901

    [15] A. Ambirajan. Optimum angles for a polarimeter: part I. Opt. Eng., 34, 1651(1995). https://doi.org/10.1117/12.202093

    [16] M. Al-Mahmoud et al. Broadband polarization rotator with tunable rotation angle composed of three wave-plates. Phys. Rev. Appl., 13, 014048(2020). https://doi.org/10.1103/PhysRevApplied.13.014048

    [17] E. Dimova et al. Broadband and ultra-broadband modular half-wave plates. Opt. Commun., 366, 382-385(2016). https://doi.org/10.1016/j.optcom.2015.12.073

    [18] E. Stoyanova et al. Achromatic polarization rotator with tunable rotation angle. J. Opt., 21, 105403(2019). https://doi.org/10.1088/2040-8986/ab40fc

    [19] S. Banerjee et al. Broadband achromatic tunable polarization rotator. Opt. Commun., 454, 124456(2020). https://doi.org/10.1016/j.optcom.2019.124456

    [20] H. Cheng et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl. Phys. Lett., 103, 223102(2013). https://doi.org/10.1063/1.4833757

    [21] X. Yu et al. Broadband tunable polarization converter realized by graphene-based metamaterial. IEEE Photonics Technol. Lett., 28, 2399-2402(2016). https://doi.org/10.1109/LPT.2016.2596843

    [22] S. Biswas et al. Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science, 374, 448-453(2021). https://doi.org/10.1126/science.abj7053

    [23] A. B. Khanikaev et al. Electromagnetically induced polarization conversion. Opt. Commun., 285, 3423-3427(2012). https://doi.org/10.1016/j.optcom.2012.03.023

    [24] J. Xu et al. Manipulating optical polarization by stereo plasmonic structure. Opt. Express, 19, 748-756(2011). https://doi.org/10.1364/OE.19.000748

    [25] C. Wu et al. Metallic helix array as a broadband wave plate. Phys. Rev. Lett., 107, 177401(2011). https://doi.org/10.1103/PhysRevLett.107.177401

    [26] Z. Wei et al. Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl. Phys. Lett., 99, 221907(2011). https://doi.org/10.1063/1.3664774

    [27] Y. Choi et al. Broadband tunable polarization rotator based on the waveguiding effect of liquid crystals. J. Phys. D: Appl. Phys., 54, 355108(2021). https://doi.org/10.1088/1361-6463/ac0925

    [28] S.-P. Chiang et al. Broadband mid-infrared polarization rotator based on optically addressable LCs. Opt. Express, 25, 16123-16129(2017). https://doi.org/10.1364/OE.25.016123

    [29] F. Peng et al. Low loss liquid crystals for infrared applications. Liq. Cryst., 41, 1545-1552(2014). https://doi.org/10.1080/02678292.2014.932452

    [30] N. S. Prasad, K. E. Arnett, N. Gupta. Mid-wave IR liquid crystal tunable retarder for spectrapolarimetric imaging. Proc. SPIE, 5268, 137-143(2004). https://doi.org/10.1117/12.519645

    [31] R. C. Sharp et al. Electrically tunable liquid-crystal wave plate in the infrared. Opt. Lett., 15, 87-89(1990). https://doi.org/10.1364/OL.15.000087

    [32] E. Garcia-Caurel et al. Mid-infrared Mueller ellipsometer with pseudo-achromatic optical elements. Appl. Opt., 54, 2776(2015). https://doi.org/10.1364/AO.54.002776

    [33] T. N. Stanislavchuk et al. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability. Rev. Sci. Instrum., 84, 023901(2013). https://doi.org/10.1063/1.4789495

    [34] D. B. Chenault, R. A. Chipman. Infrared birefringence spectra for cadmium sulfide and cadmium selenide. Appl. Opt., 32, 4223(1993). https://doi.org/10.1364/AO.32.004223

    [35] M. R. Foreman, F. Goudail. On the equivalence of optimization metrics in Stokes polarimetry. Opt. Eng., 58, 082410(2019). https://doi.org/10.1117/1.OE.58.8.082410

    [36] E. Isaacson, H. Keller. Analysis of Numerical Methods(1994).

    [37] J. Stoer, R. Bulirsch. Introduction to Numerical Analysis(2002).

    [38] J. Dai, F. Goudail. Precision analysis of arbitrary full-Stokes polarimeters in the presence of additive and Poisson noise. J. Opt. Soc. Amer. A, 36, 1229(2019). https://doi.org/10.1364/JOSAA.36.001229

    [39] J. S. Tyo. Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters. Opt. Lett., 25, 1198(2000). https://doi.org/10.1364/OL.25.001198

    [40] D. Goldstein, D. Goldstein. Polarized Light, Revised and Expanded(2003).

    [41] R. M. A. Azzam, I. M. Elminyawi, A. M. El-Saba. General analysis and optimization of the four-detector photopolarimeter. J. Opt. Soc. Amer. A, 5, 681(1988). https://doi.org/10.1364/JOSAA.5.000681

    Anne Nguyen, Enrique Garcia-Caurel, Benjamin Vest, "Characterizing thermal emission polarization with a mid-wave infrared broadband polarization state analyzer between 2.5 and 5 μm," Adv. Photon. Nexus 4, 036015 (2025)
    Download Citation