• Chinese Optics Letters
  • Vol. 19, Issue 2, 021602 (2021)
L. V. Zhukova*, D. D. Salimgareev, A. E. Lvov, A. A. Yuzhakova, A. S. Korsakov, D. A. Belousov, K. V. Lipustin, and V. M. Kondrashin
Author Affiliations
  • Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia
  • show less
    DOI: 10.3788/COL202119.021602 Cite this Article Set citation alerts
    L. V. Zhukova, D. D. Salimgareev, A. E. Lvov, A. A. Yuzhakova, A. S. Korsakov, D. A. Belousov, K. V. Lipustin, V. M. Kondrashin. Highly transparent ceramics for the spectral range from 1.0 to 60.0 µm based on solid solutions of the system AgBr–AgI–TlI–TlBr[J]. Chinese Optics Letters, 2021, 19(2): 021602 Copy Citation Text show less
    References

    [1] E. D. Palik. Handbook of Optical Constants of Solids: Handbook Version 3(1998).

    [2] J. Gowar. Optical Communication Systems(1984).

    [3] J. E. Medvinder. Fiber Optic Cables for Transmitting Information(1983).

    [4] T. Katsuyama, H. Matsumura. Infrared Optical Fibers(1992).

    [5] E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, I. P. Petrov. Optical Materials for Infrared Technology: A Reference Publication(1965).

    [6] M. J. Weber. Handbook of Optical Materials(2002).

    [7] N. K. Pavlycheva. Optical Materials and Technologies: Textbook(2008).

    [8] G. V. Polyakova, I. S. Lisitskiy. Thallium and silver halides – unique optical materials for the infrared, laser, and radiation devices. Scientific Paper Collection Topical Problems of Contemporary Mathematical and Natural Sciences(2016).

    [9] A. A. Mayer. Theory and Methods of Crystal Growth(1970).

    [10] L. V. Zhukova, A. S. Korsakov, D. D Salimgareev. Infrared Crystals Theory and Practice: A Textbook(2015).

    [11] A. Korsakov, L. Zhukova, E. Korsakova, E. Zharikov. Structure modeling and growing AgClxBr1−x, Ag1−xTlxBr1−xIx, and Ag1−xTlxClyIzBr1−y−z crystals for infrared fiber optics. J. Cryst. Growth, 386, 94(2014).

    [12] R. J. Frerichs. New optical glasses with good transparency in the infrarend. J. Opt. Soc. Am., 43, 1153(1953).

    [13] G. Z. Vinogradova. Glass Formation and Phase Equilibria in Chalcogenide Systems(1984).

    [14] . Chalcogenide glasses.

    [15] V. V. Osipov, V. A. Shitov, R. N. Maksimov, K. E. Lukyashin, V. I. Solomonov, A. V. Ishchenko. Fabrication and characterization of IR-transparent Fe2+ doped MgAl2O4 ceramics. J. Am. Ceram. Soc., 102, 4757(2019).

    [16] V. V. Osipov, V. A. Shitov, K. E. Luk’Yashin, V. V. Platonov, V. I. Solomonov, A. S. Korsakov, A. I. Medvedev. Synthesis and study of Fe2+:MgAl2O4 ceramics for active elements of solid-state lasers. Quantum Electron., 49, 89(2019).

    [17] A. S. Bubnova, V. I. Solomonov. Luminescence analysis of ceramic magnesium aluminum spinel Fe2+:MgAl2O4 synthesized from nanosized powders via syntering in air and vacuum. AIP Conf. Proc., 2174, 020087(2019).

    [18] V. V. Osipov, V. A. Shitov, R. N. Maksimov, K. E. Lukyashin, V. I. Solomonov, A. V. Ishchenko. Fabrication and characterization of highly transparent Fe2+:MgAl2O4 ceramics. Proc. SPIE, 11322, 113220M(2019).

    [19] P. P. Fedorov, A. A. Luginina, A. I. Popov. Transparent oxyfluoride glass ceramics. J. Fluor. Chem., 172, 22(2015).

    [20] E. V. Kolobkova, V. G. Melekhin, A. N. Penigin. Optical glass-ceramic based on fluorine-containing silicate glasses activated by rare-earth ions. Phys. Chem. Glasses., 33, 12(2007).

    [21] I. M. Reaney Beggiora, A. B. Seddon, D. Furniss, S. A. Tikhomirova. Phase evolution in oxy-fluoride glass ceramics. J. Non-Cryst. Solids, 326–327, 476(2003).

    [22] C. Bensalem, M. Mortier, D. Vivien, M. Diaf. Optical investigation of Eu3+:PbF2 ceramics and transparent glass–ceramics. Opt. Mater., 33, 791(2011).

    [23] O. Petrova, T. Sevostjanova, A. Khomyakov, I. Avetissov. Luminescent glass-ceramics based on nanoparticles of BaxRE1-xF2+x and PbxRE1-xF2+x solid solutions into fluoroborate. Phys. Status Solidi A, 215, 1700446(2018).

    [24] O. B. Petrova. Heterophase luminescent materials based on oxohalogen systems (RCTU named after D. I. Mendeleev).

    [25] A. S. Korsakov, L. V. Zhukova, V. Korsakov, D. S. Vrublevskiy, D. D. Salimgareev. Research of phase equilibriums and modelling of structure of AgBr–TlBr0.46I0.54 system. Tsvetnye Metally, 8, 50(2014).

    [26] A. Korsakov, D. Salimgareev, A. Lvov, L. Zhukova. Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals. Opt. Mater., 62, 534(2016).

    [27] L. V. Zhukova, A. E. Lvov, A. S. Korsakov, D. D. Salimgareev, V. S. Korsakov. Domestic developments of IR optical materials based on solid solutions of silver halogenides and monovalent thallium. Opt. Spectrosc., 125, 933(2018).

    [28] A. S. Korsakov, L. V. Zhukova, A. E. L'Vov, D. D. Salimgareev, M. S. Korsakov. Crystals and light guides for the mid-infrared spectral range. J. Opt. Technol., 84, 858(2017).

    [29] A. Korsakov, L. Zhukova, D. Salimgareev, V. Zhukov. Crystals based on solid solution of Ag1-xTlxBr1-xIx for the manufacturing of IR fibers. Chin. Opt. Lett., 13, 090602(2015).

    [30] D. D. Salimgareev, A. E. Lvov, E. A. Korsakova, A. S. Korsakov, L. V. Zhukova. Crystals of AgBr–TlBr0.46I0.54 system: synthesis, structure, properties, and application. Mater. Today Commun., 20, 100551(2019).

    [31] A. S. Korsakov, A. E. Lvov, D. S. Vrublevsky, L. V. Zhukova. Investigating the light stability of solid-solution-based AgCl-AgBr and AgBr-TlI crystals. Chin. Opt. Lett., 14, 020603(2016).

    [32] A. S. Korsakov, D. S. Vrublevsky, A. E. Lvov, L. V. Zhukova. Refractive index dispersion of AgCl1-xBrx (0 ≤ x ≤ 1) and Ag1-xTlxBr1-xIx (0 ≤ x ≤ 0.05). Opt. Mater., 64, 40(2017).

    [33] A. Korsakov, D. Salimgareev, A. Lvov, L. Zhukova. IR spectroscopic determination of the refractive index of Ag1−xTlxBr1−0.54xI0.54x (0 ≤ x ≤ 0.05) crystals. Opt. Laser Technol., 93, 18(2017).

    [34] L. V. Zhukova, A. S. Korsakov, A. E. Lvov, D. D. Salimgareev. Fiber Optic Fibers for the Middle Infrared Range(2016).

    [35] L. V. Zhukova, A. S. Korsakov, A. A. Lashova. Modeling the Structure and Fabrication of Photonic Crystal Fibers for the Mid-infrared Range: A Textbook(2018).

    [36] E. Korsakova, A. Lvov, D. Salimgareev, A. Korsakov, S. Markham, A. Mani, C. Silien, T.A. M. Syed, L. Zhukova. Stability of MIR transmittance of silver and thallium halide optical fibres in ionizating β- and γ-radiation from nuclear reactors. Infrared Phys. Tech., 93, 171(2018).

    [37] E. A. Korsakova, A. L’vov, I. Kashuba, V. Korsakov, D. Salimgareev, A. Korsakov, L. Zhukova. Fiber-optic assemblies based on polycrystalline lightguides for the mid-IR. J. Opt., 86, 439(2019).

    [38] E. Korsakova, A. Yuzhakova, A. Lvov, D. Salimgareev, A. Korsakov, L. Zhukova. Single-mode square-grid MOFs with enlarged mode field intended for the middle infrared. Opt. Mater., 100, 109652(2020).

    [39] D. D. Salimgareev, A. A. Lashova, A. S. Shmygalev, E. A. Korsakova, B. P. Zhilkin, A. S. Korsakov, L. V. Zhukova. Influence of geometrical parameters on transmitting thermal radiation through silver halide fibers. Results Phys., 16, 102994(2020).

    [40] A. Yuzhakova, D. Salimgareev, L. Zhukova, A. Lvov, A. Korsakov. Fiber optic channel based on AgBr–TlBr0.46I0.54 fibers for receiving, transmitting and controlling infrared radiation in the range from 2.5 to 25 µm. Infrared Phys. Tech., 105, 103176(2020).

    [41] V. S. Korsakov, A. E. Lvov, M. S. Korsakov, A. S. Korsakov, D. D. Salimgareev, L. V. Zhukova. AgBr–TlI crystals for medium and far IR optics (2–60 µm). Proceedings International Conference Laser Optics, 385(2018).

    [42] L. V. Zhukova, N. V. Primerov, A. S. Korsakov, A. I. Chazov. AgClxBr1-x and AgClxBryI1-x-y crystals for IR engineering and optical fiber cables. Inorg. Mater., 44, 1372(2008).

    [43] A. V. Zelyanskii, L. V. Zhukova, G. A. Kitaev. Solubility of AgCl and AgBr in HCl and HBr. Inorg. Mater., 37, 523(2001).

    [44] A. S. Korsakov, D. S. Vrublevsky, V. S. Korsakov, L. V. Zhukova. Investigating the optical properties of polycrystalline AgCl1-xBrx (0 ≤ x ≤ 1) and Ag0.95Tl0.05Br0.95I0.05 for IR engineering. Appl. Opt., 54, 8004(2015).

    Data from CrossRef

    [1] Peng-Fei Li, Hong-Ying Zhou, Wei Miao, Cheng-Ran Du. Transmission characteristics of a cylindrically-symmetric core-cladding mode coupler in the terahertz regime. Applied Physics B, 127, 98(2021).

    L. V. Zhukova, D. D. Salimgareev, A. E. Lvov, A. A. Yuzhakova, A. S. Korsakov, D. A. Belousov, K. V. Lipustin, V. M. Kondrashin. Highly transparent ceramics for the spectral range from 1.0 to 60.0 µm based on solid solutions of the system AgBr–AgI–TlI–TlBr[J]. Chinese Optics Letters, 2021, 19(2): 021602
    Download Citation