• Photonics Research
  • Vol. 13, Issue 2, 477 (2025)
Tianqi Xu1, Yushuai Liu2,3,4, Yuanmao Pu1, Yongxiang Yang1..., Qize Zhong1,5, Xingyan Zhao1, Yang Qiu1, Yuan Dong1, Tao Wu2,3,4, Shaonan Zheng1,6 and Ting Hu1,5,*|Show fewer author(s)
Author Affiliations
  • 1School of Microelectronics, Shanghai University, Shanghai 201800, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Shanghai Key Laboratory of Chips and Systems for Intelligent Connected Vehicle, Shanghai 200444, China
  • 6e-mail: snzheng@shu.edu.cn
  • show less
    DOI: 10.1364/PRJ.539211 Cite this Article Set citation alerts
    Tianqi Xu, Yushuai Liu, Yuanmao Pu, Yongxiang Yang, Qize Zhong, Xingyan Zhao, Yang Qiu, Yuan Dong, Tao Wu, Shaonan Zheng, Ting Hu, "Silicon-integrated scandium-doped aluminum nitride electro-optic modulator," Photonics Res. 13, 477 (2025) Copy Citation Text show less
    References

    [1] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [2] T. Komljenovic, D. Huang, P. Pintus. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE, 106, 2246-2257(2018).

    [3] G. Sinatkas, T. Christopoulos, O. Tsilipakos. Electro-optic modulation in integrated photonics. J. Appl. Phys., 130, 010901(2021).

    [4] E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez. 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh. Technol. Mag., 14, 42-50(2019).

    [5] Q. Cheng, M. Bahadori, M. Glick. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [6] Y. Zhang, J. Shen, J. Li. High-speed electro-optic modulation in topological interface states of a one-dimensional lattice. Light Sci. Appl., 12, 206(2023).

    [7] A. Youssefi, I. Shomroni, Y. J. Joshi. A cryogenic electro-optic interconnect for superconducting devices. Nat. Electron., 4, 326-332(2021).

    [8] Y. Yuan, Y. Peng, W. V. Sorin. A 5× times 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun., 15, 918(2024).

    [9] W. Shi, Y. Xu, H. Sepehrian. Silicon photonic modulators for PAM transmissions. J. Opt., 20, 083002(2018).

    [10] V. Sorianello, M. Midrio, G. Contestabile. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 12, 40-44(2018).

    [11] F. Valdez, V. Mere, S. Mookherjea. 100 GHz bandwidth, 1 volt integrated electro-optic Mach–Zehnder modulator at near-IR wavelengths. Optica, 10, 578-584(2023).

    [12] M. He, M. Xu, Y. Ren. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [13] Y. Liu, H. Li, J. Liu. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express, 29, 6320-6329(2021).

    [14] F. Eltes, C. Mai, D. Caimi. A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol., 37, 1456-1462(2019).

    [15] Z. Dong, A. Raju, A. B. Posadas. Monolithic barium titanate modulators on silicon-on-insulator substrates. ACS Photon., 10, 4367-4376(2023).

    [16] C. Xiong, W. H. Pernice, H. X. Tang. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett., 12, 3562-3568(2012).

    [17] V. Yoshioka, J. Lu, Z. Tang. Strongly enhanced second-order optical nonlinearity in CMOS-compatible Al1−xScxN thin films. APL Mater., 9, 101104(2021).

    [18] P. Damas, X. Le Roux, D. Le Bourdais. Wavelength dependence of Pockels effect in strained silicon waveguides. Opt. Express, 22, 22095-22100(2014).

    [19] M. Baeumler, Y. Lu, N. Kurz. Optical constants and band gap of wurtzite Al1−xScxN/Al2O3 prepared by magnetron sputter epitaxy for scandium concentrations up to x = 0.41. J. Appl. Phys., 126, 045715(2019).

    [20] K. R. Talley, S. L. Millican, J. Mangum. Implications of heterostructural alloying for enhanced piezoelectric performance of (Al, Sc)N. Phys. Rev. Mater., 2, 063802(2018).

    [21] S. Shao, Z. Luo, T. Wu. High figure-of-merit Lamb wave resonators based on Al0.7Sc0.3N thin film. IEEE Electron Device Lett., 42, 1378-1381(2021).

    [22] S. Zhu, Q. Zhong, N. Li. Integrated ScAlN photonic circuits on silicon substrate. Conference on Lasers and Electro-Optics (CLEO)(2020).

    [23] S. Shao, Z. Luo, Y. Lu. High quality co-sputtering AlScN thin films for piezoelectric lamb-wave resonators. J. Microelectromech. Syst., 31, 328-337(2022).

    [24] Z. Li, K. Bian, X. Chen. Demonstration of integrated AlScN photonic devices on 8-inch silicon substrate. J. Lightwave Technol., 42, 4933-4938(2024).

    [25] K. Bian, Z. Li, Y. Liu. Demonstration of acousto-optical modulation based on thin-film AlScN photonic platform. Photon. Res., 12, 1138-1149(2024).

    [26] Z. Xiong, X. Zhang, Z. Li. Aluminum scandium nitride on 8-inch Si wafers: material characterization and photonic device demonstration. Opt. Express, 32, 17525-17534(2024).

    [27] M. Ghatge, V. Felmetsger, R. Tabrizian. High kt2 ·Q waveguide-based ScAlN-on-Si UHF and SHF resonators. IEEE International Frequency Control Symposium (IFCS), 1-4(2018).

    [28] X. Liu, A. W. Bruch, H. X. Tang. Aluminum nitride photonic integrated circuits: from piezo-optomechanics to nonlinear optics. Adv. Opt. Photon., 15, 236-317(2023).

    [29] S. Zhu, G.-Q. Lo. Aluminum nitride electro-optic phase shifter for backend integration on silicon. Opt. Express, 24, 12501-12506(2016).

    [30] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [31] S. Abel, F. Eltes, J. E. Ortmann. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater., 18, 42-47(2019).

    [32] A. Honardoost, R. Safian, A. Rao. High-speed modeling of ultracompact electrooptic modulators. J. Lightwave Technol., 36, 5893-5902(2018).

    [33] A. Melikyan, L. Alloatti, A. Muslija. High-speed plasmonic phase modulators. Nat. Photonics, 8, 229-233(2014).

    [34] Y. Shi, L. Yan, A. E. Willner. High-speed electrooptic modulator characterization using optical spectrum analysis. J. Lightwave Technol., 21, 2358-2367(2003).

    [35] A. J. Mercante, S. Shi, P. Yao. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [36] Y.-H. Kuo, J. Luo. Ring resonator-based electrooptic polymer traveling-wave modulator. J. Lightwave Technol., 24, 3514-3519(2006).

    [37] X. Zhang, C.-J. Chung, A. Hosseini. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J. Lightwave Technol., 34, 2941-2951(2016).

    [38] B. Bortnik, Y.-C. Hung, H. Tazawa. Electrooptic polymer ring resonator modulation up to 165 GHz. IEEE J. Sel. Top. Quantum Electron., 13, 104-110(2007).

    [39] K. Powell, L. Li, A. Shams-Ansari. Integrated silicon carbide electro-optic modulator. Nat. Commun., 13, 1851(2022).

    [40] A. K. Hamze, M. Reynaud, J. Geler-Kremer. Design rules for strong electro-optic materials. NPJ Comput. Mater., 6, 130(2020).

    [41] M. Veithen, X. Gonze, P. Ghosez. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys. Rev. B, 71, 125107(2005).

    [42] D. Renaud, D. R. Assumpcao, G. Joe. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun., 14, 1496(2023).

    [43] M. Lee, H. E. Katz, C. Erben. Broadband modulation of light by using an electro-optic polymer. Science, 298, 1401-1403(2002).

    [44] F. Qiu, A. M. Spring, J. Hong. Electro‐optic polymer ring resonator modulator on a flat silicon‐on‐insulator. Laser Photon. Rev., 11, 1700061(2017).

    [45] J. Müller, F. Merget, S. S. Azadeh. Optical peaking enhancement in high-speed ring modulators. Sci. Rep., 4, 6310(2014).

    [46] B. Pile, G. Taylor. Small-signal analysis of microring resonator modulators. Opt. Express, 22, 14913-14928(2014).

    [47] B. E. Little, S. T. Chu, H. A. Haus. Microring resonator channel dropping filters. J. Lightwave Technol., 15, 998-1005(1997).

    [48] G. Wingqvist, F. Tasnadi, A. Zukauskaite. Increased electromechanical coupling in w-ScxAl1−xN. Appl. Phys. Lett., 97, 112902(2010).

    [49] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [50] A. B. Posadas, V. E. Stenger, J. DeFouw. Electro-optic barium titanate modulators on silicon photonics platform. IEEE Silicon Photonics Conference (SiPhotonics), 1-2(2023).

    [51] S. M. Sze, Y. Li, K. K. Ng. Physics of Semiconductor Devices(2021).

    [52] J. Yang, X. Meng, C. Yang. Influence of sputtering power on crystal quality and electrical properties of Sc-doped AlN film prepared by DC magnetron sputtering. Appl. Surf. Sci., 287, 355-358(2013).

    [53] B. J. Stanicki, M. Younesi, F. J. F. Löchner. Surface domain engineering in lithium niobate. OSA Contin., 3, 345-358(2020).

    [54] T. Zhao, Y. Ye, K. Guo. High energy storage properties of calcium-doped barium titanate thin films with high breakdown field strength. J. Alloy. Compd., 970, 172487(2024).

    [55] Y. Song, C. Perez, G. Esteves. Thermal conductivity of aluminum scandium nitride for 5G mobile applications and beyond. ACS Appl. Mater. Interfaces, 13, 19031-19041(2021).

    [56] Y. Yang, L. Gao, S. Gong. Surface-acoustic-wave devices based on lithium niobate and amorphous silicon thin films on a silicon substrate. IEEE Trans. Microw. Theory, 70, 5185-5194(2022).

    [57] B. F. Donovan, B. M. Foley, J. F. Ihlefeld. Spectral phonon scattering effects on the thermal conductivity of nano-grained barium titanate. Appl. Phys. Lett., 105, 082907(2014).

    [58] C. P. Ho, P. Pitchappa, B. W. Soon. Suspended 2-D photonic crystal aluminum nitride membrane reflector. Opt. Express, 23, 10598-10603(2015).

    [59] L. Moretti, M. Iodice, F. G. Della Corte. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J. Appl. Phys., 98, 036101(2005).

    [60] A. Karvounis, F. Timpu, V. V. Vogler-Neuling. Barium titanate nanostructures and thin films for photonics. Adv. Opt. Mater., 8, 2001249(2020).

    [61] G. Cocorullo, F. G. Della Corte, I. Rendina. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett., 74, 3338-3340(1999).

    [62] Y. Lu, M. Reusch, N. Kurz. Elastic modulus and coefficient of thermal expansion of piezoelectric Al1−xScxN (up to x = 0.41) thin films. APL Mater., 6, 076105(2018).

    [63] L. C. Sauze, N. Vaxelaire, D. Rouchon. Effect of the annealing treatment on the physical and structural properties of LiNbO3 thin films deposited by radio-frequency sputtering at room temperature. Thin Solid Films, 726, 138660(2021).

    [64] K. Maruyama, Y. Kawakami, F. Narita. Young’s modulus and ferroelectric property of BaTiO3 films formed by aerosol deposition in consideration of residual stress and film thickness. Jpn. J. Appl. Phys., 61, SN1011(2022).

    [65] M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon?. J. Microelectromech. Syst., 19, 229-238(2010).

    Tianqi Xu, Yushuai Liu, Yuanmao Pu, Yongxiang Yang, Qize Zhong, Xingyan Zhao, Yang Qiu, Yuan Dong, Tao Wu, Shaonan Zheng, Ting Hu, "Silicon-integrated scandium-doped aluminum nitride electro-optic modulator," Photonics Res. 13, 477 (2025)
    Download Citation