• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 2, 22003 (2022)
Yi Zhao1, Wenqing Liu1, Jiaoyang Zhao1, Yasi Wang2, Jueting Zheng1, Junyang Liu1、2、*, Wenjing Hong1、2, and Zhong-Qun Tian2、3
Author Affiliations
  • 1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
  • 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People’s Republic of China
  • 3State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of Chinac
  • show less
    DOI: 10.1088/2631-7990/ac5f78 Cite this Article
    Yi Zhao, Wenqing Liu, Jiaoyang Zhao, Yasi Wang, Jueting Zheng, Junyang Liu, Wenjing Hong, Zhong-Qun Tian. The fabrication, characterization and functionalization in molecular electronics[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 22003 Copy Citation Text show less
    References

    [1] Moore G E 1998 Cramming more components onto integrated circuits Proc. IEEE 86 82-5

    [2] Salahuddin S, Ni K and Datta S 2018 The era of hyper-scaling in electronics Nat. Electron. 1 442-50

    [3] Chen Y, Shu Z, Zhang S, Zeng P, Liang H, Zheng M and Duan H 2021 Sub-10 nm fabrication: methods and applications Int. J. Extreme Manuf. 3 032002

    [4] Yang Y, Gu C and Li J 2019 Sub-5 nm metal nanogaps: physical properties, fabrication methods, and device applications Small 15 e1804177

    [5] Fang F, Zhang N, Guo D, Ehmann K, Cheung B, Liu K and Yamamura K 2019 Towards atomic and close-to-atomic scale manufacturing Int. J. Extreme Manuf. 1 012001

    [6] Luo S, Mancini A, Berte R, Hoff B H, Maier S A and de Mello J C 2021 Massively parallel arrays of size-controlled metallic nanogaps with gap-widths down to the sub-3-nm level Adv. Mater. 33 e2100491

    [7] Luo S, Hoff B H, Maier S A and de Mello J C 2021 Scalable fabrication of metallic nanogaps at the sub-10 nm level Adv. Sci. 8 2102756

    [8] Liu J et al 2019 Transition from tunneling leakage current to molecular tunneling in single-molecule junctions Chemistry 5 390-401

    [9] Peercy P S 2000 The drive to miniaturization Nature 406 1023-6

    [10] van Ruitenbeek J M 2016 Molecular electronics: a brief overview of the status of the field Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory ed M Kiguchi (Singapore: Springer Singapore) pp 1-23

    [11] Xiang D, Wang X L, Jia C C, Lee T and Guo X F 2016 Molecular-scale electronics: from concept to function Chem. Rev. 116 4318-440

    [12] Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F and Guo X 2019 Concepts in the design and engineering of single-molecule electronic devices Nat. Rev. Phys. 1 211-30

    [13] Su T A, Neupane M, Steigerwald M L, Venkataraman L and Nuckolls C 2016 Chemical principles of single-molecule electronics Nat. Rev. Mater. 1 16002

    [14] Chen H L and Stoddart J F 2021 From molecular to supramolecular electronics Nat. Rev. Mater. 6 804-28

    [15] Gehring P, Thijssen J M and van der Zant H S J 2019 Single-molecule quantum-transport phenomena in break junctions Nat. Rev. Phys. 1 381-96

    [16] Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S and Moth-Poulsen K 2014 Single-molecule electronics: from chemical design to functional devices Chem. Soc. Rev. 43 7378-411

    [17] Cui A, Dong H and Hu W 2015 Nanogap electrodes towards solid state single-molecule transistors Small 11 6115-41

    [18] Tsutsui M and Taniguchi M 2012 Single molecule electronics and devices Sensors 12 7259-729

    [19] Bai J, Li X, Zhu Z, Zheng Y and Hong W 2021 Single-molecule electrochemical transistors Adv. Mater. 33 2005883

    [20] Hong C, Yang S and Ndukaife J C 2020 Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers Nat. Nanotechnol. 15 908-13

    [21] Wang T and Nijhuis C A 2016 Molecular electronic plasmonics Appl. Mater. Today 3 73-86

    [22] Chen L J, Feng A N, Wang M N, Liu J Y, Hong W J, Guo X F and Xiang D 2018 Towards single-molecule optoelectronic devices Sci. China-Chem. 61 1368-84

    [23] Barla P, Joshi V K and Bhat S 2021 Spintronic devices: a promising alternative to CMOS devices J. Comput. Electron. 20 805-37

    [24] Komoto Y, Fujii S, Iwane M and Kiguchi M 2016 Single-molecule junctions for molecular electronics J. Mater. Chem. C 4 8842-58

    [25] Lu Z, Zheng J, Shi J, Zeng B-F, Yang Y, Hong W and Tian Z-Q 2021 Application of micro/nanofabrication techniques to on-chip molecular electronics Small Methods 5 2001034

    [26] Evers F, Korytár R, Tewari S and van Ruitenbeek J M 2020 Advances and challenges in single-molecule electron transport Rev. Mod. Phys. 92 035001

    [27] Makk P, Tomaszewski D, Martinek J, Balogh Z, Csonka S, Wawrzyniak M, Frei M, Venkataraman L and Halbritter A 2012 Correlation analysis of atomic and single-molecule junction conductance ACS Nano 6 3411-23

    [28] Haiss W, Nichols R J, van Zalinge H, Higgins S J, Bethell D and Schiffrin D J 2004 Measurement of single molecule conductivity using the spontaneous formation of molecular wires Phys. Chem. Chem. Phys. 6 4330-7

    [29] Haiss W, van Zalinge H, Higgins S J, Bethell D, Hobenreich H, Schiffrin D J and Nichols R J 2003 Redox state dependence of single molecule conductivity J. Am. Chem. Soc. 125 15294-5

    [30] Xu B and Tao N 2003 Measurement of single-molecule resistance by repeated formation of molecular junctions Science 301 1221-3

    [31] Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Dependence of single-molecule junction conductance on molecular conformation Nature 442 904-7

    [32] Garner M H et al 2018 Comprehensive suppression of single-molecule conductance using destructive sigma-interference Nature 558 415-9

    [33] Huang Z, Xu B, Chen Y, Ventra M D and Tao N 2006 Measurement of current-induced local heating in a single molecule junction Nano Lett. 6 1240-4

    [34] Xu B, Xiao X and Tao N J 2003 Measurements of single-molecule electromechanical properties J. Am. Chem. Soc. 125 16164-5

    [35] Frei M, Aradhya S V, Hybertsen M S and Venkataraman L 2012 Linker dependent bond rupture force measurements in single-molecule junctions J. Am. Chem. Soc. 134 4003-6

    [36] Aradhya S V, Frei M, Hybertsen M S and Venkataraman L 2012 Van der Waals interactions at metal/organic interfaces at the single-molecule level Nat. Mater. 11 872-6

    [37] Lumbroso O S, Simine L, Nitzan A, Segal D and Tal O 2018 Electronic noise due to temperature differences in atomic-scale junctions Nature 562 240-4

    [38] Hong W, Li H, Liu S, Fu Y, Li J, Kaliginedi V, Decurtins S and Wandlowski T 2012 Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au-C sigma-bonds J. Am. Chem. Soc. 134 19425-31

    [39] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Conductance of a molecular junction Science 278 252-4

    [40] Zhou C, Muller C J, Deshpande M R, Sleight J W and Reed M A 1995 Microfabrication of a mechanically controllable break junction in silicon Appl. Phys. Lett. 67 1160-2

    [41] Huber R et al 2008 Electrical conductance of conjugated oligomers at the single molecule level J. Am. Chem. Soc. 130 1080-4

    [42] Dubois V, Raja S N, Gehring P, Caneva S, van der Zant H S J, Niklaus F and Stemme G 2018 Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices Nat. Commun. 9 3433

    [43] Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J and Renaud N 2016 Mechanically controlled quantum interference in individual π-stacked dimers Nat. Chem. 8 1099-104

    [44] Lortscher E, Ciszek J W, Tour J and Riel H 2006 Reversible and controllable switching of a single-molecule junction Small 2 973-7

    [45] Lortscher E, Gotsmann B, Lee Y, Yu L, Rettner C and Riel H 2012 Transport properties of a single-molecule diode ACS Nano 6 4931-9

    [46] Jeong H, Domulevicz L K and Hihath J 2021 Design and fabrication of a MEMS-based break junction device for mechanical strain-correlated optical characterization of a single-molecule J. Microelectromech. Syst. 30 126-36

    [47] Jeong H, Li H B, Domulevicz L and Hihath J 2020 An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies Adv. Funct. Mater. 30 2000615

    [48] Song H, Kim Y, Jang Y H, Jeong H, Reed M A and Lee T 2009 Observation of molecular orbital gating Nature 462 1039-43

    [49] Hoffmann-Vogel R 2017 Electromigration and the structure of metallic nanocontacts Appl. Phys. Rev. 4 031302

    [50] Kim Y, Ang C H, Ang K and Chang S W 2021 Electromigrated nanogaps: a review on the fabrications and applications J. Vac. Sci. Technol. B 39 010802

    [51] Park H, Lim A K L, Alivisatos A P, Park J and McEuen P L 1999 Fabrication of metallic electrodes with nanometer separation by electromigration Appl. Phys. Lett. 75 301-3

    [52] Ward D R, Corley D A, Tour J M and Natelson D 2011 Vibrational and electronic heating in nanoscale junctions Nat. Nanotechnol. 6 33-38

    [53] Qin L, Park S, Huang L and Mirkin Chad A 2005 On-wire lithography Science 309 113-5

    [54] Guo X et al 2006 Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules Science 311 356

    [55] Guo X and Nuckolls C 2009 Functional single-molecule devices based on SWNTs as point contacts J. Mater. Chem. 19 5470-3

    [56] Qi P, Javey A, Rolandi M, Wang Q, Yenilmez E and Dai H 2004 Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes J. Am. Chem. Soc. 126 11774-5

    [57] Wei D, Liu Y, Cao L, Wang Y, Zhang H and Yu G 2008 Real time and in situ control of the gap size of nanoelectrodes for molecular devices Nano Lett. 8 1625-30

    [58] Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald M L, Wu X, Liu Z and Guo X 2012 Building high-throughput molecular junctions using indented graphene point contacts Angew. Chem., Int. Ed. 51 12228-32

    [59] Prins F, Barreiro A, Ruitenberg J W, Seldenthuis J S, Aliaga-Alcalde N, Vandersypen L M K and van der Zant H S J 2011 Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes Nano Lett. 11 4607-11

    [60] Caneva S, Gehring P, Garcia-Suárez V M, Garcia-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C and van der Zant H S J 2018 Mechanically controlled quantum interference in graphene break junctions Nat. Nanotechnol. 13 1126-31

    [61] Chen F, Li X, Hihath J, Huang Z and Tao N 2006 Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules J. Am. Chem. Soc. 128 15874-81

    [62] Hong W, Manrique D Z, Moreno-Garcia P, Gulcur M, Mishchenko A, Lambert C J, Bryce M R and Wandlowski T 2012 Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group J. Am. Chem. Soc. 134 2292-304

    [63] Di Ventra M and Taniguchi M 2016 Decoding DNA, RNA and peptides with quantum tunnelling Nat. Nanotechnol. 11 117-26

    [64] Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M and Cahen D 2016 Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping Proc. Natl Acad. Sci. USA 113 10785

    [65] Yang C et al 2021 Electric field-catalyzed single-molecule Diels-Alder reaction dynamics Sci. Adv. 7 eabf0689

    [66] Li P, Jia C and Guo X 2021 Structural transition dynamics in carbon electrode-based single-molecule junctions Chin. J. Chem. 39 223-31

    [67] Schoonveld W A, Wildeman J, Fichou D, Bobbert P A, van Wees B J and Klapwijk T M 2000 Coulomb-blockade transport in single-crystal organic thin-film transistors Nature 404 977-80

    [68] Park J et al 2002 Coulomb blockade and the Kondo effect in single-atom transistors Nature 417 722-5

    [69] Pasupathy A N, Bialczak R C, Martinek J, Grose J E, Donev L A K, McEuen P L and Ralph D C 2004 The Kondo effect in the presence of ferromagnetism Science 306 86-89

    [70] Bai J et al 2019 Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating Nat. Mater. 18 364-9

    [71] Huang B et al 2018 Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions J. Am. Chem. Soc. 140 17685-90

    [72] Li Y et al 2019 Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport Nat. Mater. 18 357-63

    [73] Liu J, Huang X, Wang F and Hong W 2019 Quantum interference effects in charge transport through single-molecule junctions: detection, manipulation, and application Acc. Chem. Res. 52 151-60

    [74] Lee W, Kim K, Jeong W, Zotti L A, Pauly F, Cuevas J C and Reddy P 2013 Heat dissipation in atomic-scale junctions Nature 498 209-12

    [75] Mosso N, Drechsler U, Menges F, Nirmalraj P, Karg S, Riel H and Gotsmann B 2017 Heat transport through atomic contacts Nat. Nanotechnol. 12 430-3

    [76] Cui L, Jeong W, Hur S, Matt M, Klockner J C, Pauly F, Nielaba P, Cuevas J C, Meyhofer E and Reddy P 2017 Quantized thermal transport in single-atom junctions Science 355 1192-5

    [77] Cui L, Hur S, Akbar Z A, Klockner J C, Jeong W, Pauly F, Jang S-Y, Reddy P and Meyhofer E 2019 Thermal conductance of single-molecule junctions Nature 572 628-33

    [78] Tsutsui M, Morikawa T, He Y, Arima A and Taniguchi M 2015 High thermopower of mechanically stretched single-molecule junctions Sci. Rep. 5 11519

    [79] Morikawa T, Arima A, Tsutsui M and Taniguchi M 2014 Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions Nanoscale 6 8235-41

    [80] Tsutsui M, Morikawa T, Arima A and Taniguchi M 2013 Thermoelectricity in atom-sized junctions at room temperatures Sci. Rep. 3 3326

    [81] Tsutsui M, Kawai T and Taniguchi M 2012 Unsymmetrical hot electron heating in quasi-ballistic nanocontacts Sci. Rep. 2 217

    [82] Emberly E G and Kirczenow G 2002 Molecular spintronics: spin-dependent electron transport in molecular wires Chem. Phys. 281 311-24

    [83] Li H, Shi W, Song J, Jang H-J, Dailey J, Yu J and Katz H E 2019 Chemical and biomolecule sensing with organic field-effect transistors Chem. Rev. 119 3-35

    [84] Zhang C, Chen P and Hu W 2015 Organic field-effect transistor-based gas sensors Chem. Soc. Rev. 44 2087-107

    [85] Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F and Schull G 2014 Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope Phys. Rev. Lett. 112 047403

    [86] Schwarz F and Lortscher E 2014 Break-junctions for investigating transport at the molecular scale J. Phys.-Condes. Matter 26 474201

    [87] Khoo K H, Chen Y, Li S and Quek S Y 2015 Length dependence of electron transport through molecular wires—a first principles perspective Phys. Chem. Chem. Phys. 17 77-96

    [88] McCreery R L 2004 Molecular electronic junctions Chem. Mater. 16 4477-96

    [89] Scholes G D et al 2017 Using coherence to enhance function in chemical and biophysical systems Nature 543 647-56

    [90] Fano U 1961 Effects of configuration interaction on intensities and phase shifts Phys. Rev. 124 1866-78

    [91] Hong W, Valkenier H, Mészáros G, Manrique D Z, Mishchenko A, Putz A, Garcia P M, Lambert C J, Hummelen J C and Wandlowski T 2011 An MCBJ case study: the influence of π-conjugation on the single-molecule conductance at a solid/liquid interface Beilstein J. Nanotechnol. 2 699-713

    [92] Yang G et al 2017 Protonation tuning of quantum interference in azulene-type single-molecule junctions Chem. Sci. 8 7505-9

    [93] Zhang Y-P et al 2018 Distinguishing diketopyrrolopyrrole isomers in single-molecule junctions via reversible stimuli-responsive quantum interference J. Am. Chem. Soc. 140 6531-5

    [94] Jeong H, Kim D, Xiang D and Lee T 2017 High-yield functional molecular electronic devices ACS Nano 11 6511-48

    [95] Vilan A, Aswal D and Cahen D 2017 Large-area, ensemble molecular electronics: motivation and challenges Chem. Rev. 117 4248-86

    [96] Zheng H, Jiang F, He R, Yang Y, Shi J and Hong W 2019 Charge transport through peptides in single-molecule electrical measurements Chin. J. Chem. 37 1083-96

    [97] Liu Z et al 2011 Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy Nat. Commun. 2 305

    [98] Tian J H, Liu B, Li X, Yang Z L, Ren B, Wu S T, Tao N and Tian Z Q 2006 Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method J. Am. Chem. Soc. 128 14748-9

    [99] Akkerman H B, Blom P W M, de Leeuw D M and de Boer B 2006 Towards molecular electronics with large-area molecular junctions Nature 441 69-72

    [100] Holmlin R E, Haag R, Chabinyc M L, Ismagilov R F, Cohen A E, Terfort A, Rampi M A and Whitesides G M 2001 Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers J. Am. Chem. Soc. 123 5075-85

    [101] Chiechi R C, Weiss E A, Dickey M D and Whitesides G M 2008 Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers Angew. Chem., Int. Ed. 47 142-4

    [102] Feldman A K, Steigerwald M L, Guo X and Nuckolls C 2008 Molecular electronic devices based on single-walled carbon nanotube electrodes Acc. Chem. Res. 41 1731-41

    [103] Ghasemi S and Moth-Poulsen K 2021 Single molecule electronic devices with carbon-based materials: status and opportunity Nanoscale 13 659-71

    [104] Jia C, Ma B, Xin N and Guo X 2015 Carbon electrode-molecule junctions: a reliable platform for molecular electronics Acc. Chem. Res. 48 2565-75

    [105] Black J R 1969 Electromigration—a brief survey and some recent results IEEE Trans. Electron Devices 16 338-47

    [106] Houck A A, Labaziewicz J, Chan E K, Folk J A and Chuang I L 2005 Kondo effect in electromigrated gold break junctions Nano Lett. 5 1685-8

    [107] Esen G and Fuhrer M S 2005 Temperature control of electromigration to form gold nanogap junctions Appl. Phys. Lett. 87 263101

    [108] Strachan D R, Smith D E, Johnston D E, Park T H, Therien M J, Bonnell D A and Johnson A T 2005 Controlled fabrication of nanogaps in ambient environment for molecular electronics Appl. Phys. Lett. 86 043109

    [109] Hoffmann R, Weissenberger D, Hawecker J and Stoffler D 2008 Conductance of gold nanojunctions thinned by electromigration Appl. Phys. Lett. 93 043118

    [110] Campbell J M and Knobel R G 2013 Feedback-controlled electromigration for the fabrication of point contacts Appl. Phys. Lett. 102 023105

    [111] Johnston D E, Strachan D R and Johnson A T C 2007 Parallel fabrication of nanogap electrodes Nano Lett. 7 2774-7

    [112] Suga H, Suzuki H, Otsu K, Abe T, Umeta Y, Tsukagoshi K, Sumiya T, Shima H, Akinaga H and Naitoh Y 2020 Feedback electromigration assisted by alternative voltage operation for the fabrication of facet-edge nanogap electrodes ACS Appl. Nano Mater. 3 4077-83

    [113] O’Neill K, Osorio E A and van der Zant H S J 2007 Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes Appl. Phys. Lett. 90 133109

    [114] Prins F, Hayashi T, de Vos van Steenwijk B J A, Gao B, Osorio E A, Muraki K and van der Zant H S J 2009 Room-temperature stability of Pt nanogaps formed by self-breaking Appl. Phys. Lett. 94 123108

    [115] Wheeler P J, Chen R and Natelson D 2013 Noise in electromigrated nanojunctions Phys. Rev. B 87 155411

    [116] Kanamaru Y, Ando M and Shirakashi J-I 2014 Ultrafast feedback-controlled electromigration using a field-programmable gate array J. Vac. Sci. Technol. B 33 02B106

    [117] Xiang A, Hou S and Liao J 2014 Tuning the local temperature during feedback controlled electromigration in gold nanowires Appl. Phys. Lett. 104 223113

    [118] Rothemund P, Morris Bowers C, Suo Z and Whitesides G M 2018 Influence of the contact area on the current density across molecular tunneling junctions measured with EGaIn top-electrodes Chem. Mater. 30 129-37

    [119] Karuppannan S K, Hongting H, Troadec C, Vilan A and Nijhuis C A 2019 Ultrasmooth and photoresist-free micropore-based EGaIn molecular junctions: fabrication and how roughness determines voltage response Adv. Funct. Mater. 29 1904452

    [120] Nijhuis C A, Reus W F, Barber J R, Dickey M D and Whitesides G M 2010 Charge transport and rectification in arrays of SAM-based tunneling junctions Nano Lett. 10 3611-9

    [121] Nijhuis C A, Reus W F, Barber J R and Whitesides G M 2012 Comparison of SAM-based junctions with Ga2O3/EGaIn top electrodes to other large-area tunneling junctions J. Phys. Chem. C 116 14139-50

    [122] Wan A, Jiang L, Sangeeth C S S and Nijhuis C A 2014 Reversible soft top-contacts to yield molecular junctions with precise and reproducible electrical characteristics Adv. Funct. Mater. 24 4442-56

    [123] Zhu Z, Daniel T A, Maitani M, Cabarcos O M, Allara D L and Winograd N 2006 Controlling gold atom penetration through alkanethiolate self-assembled monolayers on Au{111} by adjusting terminal group intermolecular interactions J. Am. Chem. Soc. 128 13710-9

    [124] Kim T-W, Wang G, Lee H and Lee T 2007 Statistical analysis of electronic properties of alkanethiols in metal-molecule-metal junctions Nanotechnology 18 315204

    [125] Haick H and Cahen D 2008 Contacting organic molecules by soft methods: towards molecule-based electronic devices Acc. Chem. Res. 41 359-66

    [126] Ulgut B and Abruna H D 2008 Electron transfer through molecules and assemblies at electrode surfaces Chem. Rev. 108 2721-36

    [127] Khoshmanesh K, Tang S-Y, Zhu J Y, Schaefer S, Mitchell A, Kalantar-zadeh K and Dickey M D 2017 Liquid metal enabled microfluidics Lab Chip 17 974-93

    [128] Peng Z-L, Chen Z-B, Zhou X-Y, Sun -Y-Y, Liang J-H, Niu Z-J, Zhou X-S and Mao B-W 2012 Single molecule conductance of carboxylic acids contacting Ag and Cu electrodes J. Phys. Chem. C 116 21699-705

    [129] Aradhya S V, Frei M, Halbritter A and Venkataraman L 2013 Correlating structure, conductance, and mechanics of silver atomic-scale contacts ACS Nano 7 3706-12

    [130] Ternes M, González C, Lutz C P, Hapala P, Giessibl F J, Jelinek P and Heinrich A J 2011 Interplay of conductance, force, and structural change in metallic point contacts Phys. Rev. Lett. 106 016802

    [131] Li X et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312

    [132] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666

    [133] Dai H 2002 Carbon nanotubes: synthesis, integration, and properties Acc. Chem. Res. 35 1035-44

    [134] Avouris P 2002 Molecular electronics with carbon nanotubes Acc. Chem. Res. 35 1026-34

    [135] Tsukagoshi K, Yagi I and Aoyagi Y 2004 Pentacene nanotransistor with carbon nanotube electrodes Appl. Phys. Lett. 85 1021-3

    [136] Collins P G, Hersam M, Arnold M, Martel R and Avouris P 2001 Current saturation and electrical breakdown in multiwalled carbon nanotubes Phys. Rev. Lett. 86 3128-31

    [137] Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M and Dai H 2004 High-field quasiballistic transport in short carbon nanotubes Phys. Rev. Lett. 92 106804

    [138] Collins P G, Arnold M S and Avouris P 2001 Engineering carbon nanotubes and nanotube circuits using electrical breakdown Science 292 706-9

    [139] Whalley A C, Steigerwald M L, Guo X and Nuckolls C 2007 Reversible switching in molecular electronic devices J. Am. Chem. Soc. 129 12590-1

    [140] Thiele C et al 2014 Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts Appl. Phys. Lett. 104 103102

    [141] Roy S, Vedala H, Roy A D, Kim D-H, Doud M, Mathee K, Shin H-K, Shimamoto N, Prasad V and Choi W 2008 Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes Nano Lett. 8 26-30

    [142] Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183-91

    [143] Nef C, Pósa L, Makk P, Fu W, Halbritter A, Schonenberger C and Calame M 2014 High-yield fabrication of nm-size gaps in monolayer CVD graphene Nanoscale 6 7249-54

    [144] Mol J A, Lau C S, Lewis W J M, Sadeghi H, Roche C, Cnossen A, Warner J H, Lambert C J, Anderson H L and Briggs G A D 2015 Graphene-porphyrin single-molecule transistors Nanoscale 7 13181-5

    [145] Sadeghi H, Mol J A, Lau C S, Briggs G A D, Warner J and Lambert C J 2015 Conductance enlargement in picoscale electroburnt graphene nanojunctions Proc. Natl Acad. Sci. USA 112 2658

    [146] Lau C S, Mol J A, Warner J H and Briggs G A D 2014 Nanoscale control of graphene electrodes Phys. Chem. Chem. Phys. 16 20398-401

    [147] Zhu Y, Tan Z and Hong W 2021 Simultaneous electrical and mechanical characterization of single-molecule junctions using AFM-BJ technique ACS Omega 6 30873-88

    [148] Zhou X-S, Liang J-H, Chen Z-B and Mao B-W 2011 An electrochemical jump-to-contact STM-break junction approach to construct single molecular junctions with different metallic electrodes Electrochem. Commun. 13 407-10

    [149] Wang Y-H, Zhou X-Y, Sun -Y-Y, Han D, Zheng J-F, Niu Z-J and Zhou X-S 2014 Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction Electrochim. Acta 123 205-10

    [150] Li X-M, Wang Y-H, Seng J-W, Zheng J-F, Cao R, Shao Y, Chen J-Z, Li J-F, Zhou X-S and Mao B-W 2021 z-Piezo pulse-modulated STM break junction: toward single-molecule rectifiers with dissimilar metal electrodes ACS Appl. Mat. Interfaces 13 8656-63

    [151] Vezzoli A, Brooke R J, Ferri N, Brooke C, Higgins S J, Schwarzacher W and Nichols R J 2018 Charge transport at a molecular GaAs nanoscale junction Faraday Discuss. 210 397-408

    [152] Vezzoli A, Brooke R J, Ferri N, Higgins S J, Schwarzacher W and Nichols R J 2017 Single-molecule transport at a rectifying GaAs contact Nano Lett. 17 1109-15

    [153] Vezzoli A, Brooke R J, Higgins S J, Schwarzacher W and Nichols R J 2017 Single-molecule photocurrent at a metal-molecule-semiconductor junction Nano Lett. 17 6702-7

    [154] Aragonès A C, Darwish N, Ciampi S, Sanz F, Gooding J J and Diez-Pérez I 2017 Single-molecule electrical contacts on silicon electrodes under ambient conditions Nat. Commun. 8 15056

    [155] Peiris C R, Ciampi S, Dief E M, Zhang J, Canfield P J, Le Brun A P, Kosov D S, Reimers J R and Darwish N 2020 Spontaneous S-Si bonding of alkanethiols to Si(111)-H: towards Si-molecule-Si circuits Chem. Sci. 11 5246-56

    [156] Peiris C R, Vogel Y B, Le Brun A P, Aragonès A C, Coote M L, Diez-Pérez I, Ciampi S and Darwish N 2019 Metal-single-molecule-semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes J. Am. Chem. Soc. 141 14788-97

    [157] Kim T, Liu Z-F, Lee C, Neaton J B and Venkataraman L 2014 Charge transport and rectification in molecular junctions formed with carbon-based electrodes Proc. Natl Acad. Sci. USA 111 10928

    [158] Rudnev A V, Kaliginedi V, Droghetti A, Ozawa H, Kuzume A, Haga M-A, Broekmann P and Rungger I 2017 Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts Sci. Adv. 3 e1602297

    [159] Liu L et al 2016 Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene-gold nanogap electrodes Nanoscale 8 14507-13

    [160] Tao S et al 2019 Graphene-contacted single molecular junctions with conjugated molecular wires ACS Appl. Nano Mater. 2 12-18

    [161] Zhang Q, Liu L, Tao S, Wang C, Zhao C, González C, Dappe Y J, Nichols R J and Yang L 2016 Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions Nano Lett. 16 6534-40

    [162] He C, Zhang Q, Fan Y, Zhao C, Zhao C, Ye J, Dappe Y J, Nichols R J and Yang L 2019 Effect of asymmetric anchoring groups on electronic transport in hybrid metal/molecule/graphene single molecule junctions ChemPhysChem 20 1830-6

    [163] He C, Zhang Q, Gao T, Liu C, Chen Z, Zhao C, Zhao C, Nichols R J, Dappe Y J and Yang L 2020 Charge transport in hybrid platinum/molecule/graphene single molecule junctions Phys. Chem. Chem. Phys. 22 13498-504

    [164] He C, Zhang Q, Tao S, Zhao C, Zhao C, Su W, Dappe Y J, Nichols R J and Yang L 2018 Carbon-contacted single molecule electrical junctions Phys. Chem. Chem. Phys. 20 24553-60

    [165] Xiang D, Jeong H, Lee T and Mayer D 2013 Mechanically controllable break junctions for molecular electronics Adv. Mater. 25 4845-67

    [166] Moreland J and Ekin J W 1985 Electron tunneling experiments using Nb-Sn ‘break’ junctions J. Appl. Phys. 58 3888-95

    [167] Muller C J, van Ruitenbeek J M and de Jongh L J 1992 Experimental observation of the transition from weak link to tunnel junction Physica C 191 485-504

    [168] Muller C J, van Ruitenbeek J M and de Jongh L J 1992 Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width Phys. Rev. Lett. 69 140-3

    [169] Li R et al 2017 Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions J. Am. Chem. Soc. 139 14344-7

    [170] Liu J et al 2017 Radical-enhanced charge transport in single-molecule phenothiazine electrical junctions Angew. Chem., Int. Ed. 56 13061-5

    [171] Boussaad S and Tao N J 2002 Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method Appl. Phys. Lett. 80 2398-400

    [172] He H X, Boussaad S, Xu B Q, Li C Z and Tao N J 2002 Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps J. Electroanal. Chem. 522 167-72

    [173] Li C Z, He H X and Tao N J 2000 Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching Appl. Phys. Lett. 77 3995-7

    [174] Liu B, Xiang J, Tian J-H, Zhong C, Mao B-W, Yang F-Z, Chen Z-B, Wu S-T and Tian Z-Q 2005 Controllable nanogap fabrication on microchip by chronopotentiometry Electrochim. Acta 50 3041-7

    [175] Mészáros G, Kronholz S, Karthauser S, Mayer D and Wandlowski T 2007 Electrochemical fabrication and characterization of nanocontacts and nm-sized gaps Appl. Phys. A 87 569-75

    [176] Tian J-H et al 2010 The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules Nanotechnology 21 274012

    [177] Yang Y, Chen Z, Liu J, Lu M, Yang D, Yang F and Tian Z 2011 An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements Nano Res. 4 1199-207

    [178] Yang Y, Liu J, Feng S, Wen H, Tian J, Zheng J, Schollhorn B, Amatore C, Chen Z and Tian Z 2016 Unexpected current-voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted-MCBJ Nano Res. 9 560-70

    [179] Zheng J-T et al 2016 Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions Electrochim. Acta 200 268-75

    [180] Yang Y et al 2011 Conductance histogram evolution of an EC-MCBJ fabricated Au atomic point contact Nanotechnology 22 275313

    [181] Yi Z, Banzet M, Offenhausser A and Mayer D 2010 Fabrication of nanogaps with modified morphology by potential-controlled gold deposition Phys. Status Solidi 4 73-75

    [182] van Ruitenbeek J M, Alvarez A, Pineyro I, Grahmann C, Joyez P, Devoret M H, Esteve D and Urbina C 1996 Adjustable nanofabricated atomic size contacts Rev. Sci. Instrum. 67 108-11

    [183] Arroyo C R, Frisenda R, Moth-Poulsen K, Seldenthuis J S, Bjornholm T and van der Zant H S J 2013 Quantum interference effects at room temperature in OPV-based single-molecule junctions Nanoscale Res. Lett. 8 234

    [184] Kim Y et al 2012 Charge transport characteristics of diarylethene photoswitching single-molecule junctions Nano Lett. 12 3736-42

    [185] Schirm C, Matt M, Pauly F, Cuevas J C, Nielaba P and Scheer E 2013 A current-driven single-atom memory Nat. Nanotechnol. 8 645-8

    [186] Stefani D, Guo C, Ornago L, Cabosart D, El Abbassi M, Sheves M, Cahen D and van der Zant H S J 2021 Conformation-dependent charge transport through short peptides Nanoscale 13 3002-9

    [187] Zhang S et al 2021 In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation Nano Today 39 101226

    [188] Yang Y, Liu J, Zheng J, Lu M, Shi J, Hong W, Yang F and Tian Z 2017 Promising electroplating solution for facile fabrication of Cu quantum point contacts Nano Res. 10 3314-23

    [189] Tan Z et al 2019 Atomically defined angstrom-scale all-carbon junctions Nat. Commun. 10 1748

    [190] Zhao S et al 2020 Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction Sci. Adv. 6 eaba6714

    [191] Champagne A R, Pasupathy A N and Ralph D C 2005 Mechanically adjustable and electrically gated single-molecule transistors Nano Lett. 5 305-8

    [192] Martin C A, Smit R H M, van der Zant H S J and van Ruitenbeek J M 2009 A nanoelectromechanical single-atom switch Nano Lett. 9 2940-5

    [193] Martin C A, van Ruitenbeek J M and van der Zant H S J 2010 Sandwich-type gated mechanical break junctions Nanotechnology 21 265201

    [194] Perrin M L, Verzijl C J O, Martin C A, Shaikh A J, Eelkema R, van Esch J H, van Ruitenbeek J M, Thijssen J M, van der Zant H S J and Dulic D 2013 Large tunable image-charge effects in single-molecule junctions Nat. Nanotechnol. 8 282-7

    [195] Mangin A, Anthore A, Della Rocca M L, Boulat E and Lafarge P 2009 Transport through metallic nanogaps in an in-plane three-terminal geometry J. Appl. Phys. 105 014313

    [196] Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q and Mayer D 2013 Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating Nano Lett. 13 2809-13

    [197] Arima A, Tsutsui M, Morikawa T, Yokota K and Taniguchi M 2014 Fabrications of insulator-protected nanometer-sized electrode gaps J. Appl. Phys. 115 114310

    [198] Muthusubramanian N, Galan E, Maity C, Eelkema R, Grozema F C and van der Zant H S J 2016 Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments Appl. Phys. Lett. 109 013102

    [199] Zhao Z, Guo C, Ni L, Zhao X, Zhang S and Xiang D 2021 In situ photoconductivity measurements of imidazole in optical fiber break-junctions Nanoscale Horiz. 6 386-92

    [200] Benner D, Boneberg J, Nurnberger P, Waitz R, Leiderer P and Scheer E 2014 Lateral and temporal dependence of the transport through an atomic gold contact under light irradiation: signature of propagating surface plasmon polaritons Nano Lett. 14 5218-23

    [201] Fischer A C, Forsberg F, Lapisa M, Bleiker S J, Stemme G, Roxhed N and Niklaus F 2015 Integrating MEMS and ICs Microsyst. Nanoeng. 1 15005

    [202] Karipidou Z et al 2016 Ultrarobust thin-film devices from self-assembled metal-terpyridine oligomers Adv. Mater. 28 3473-80

    [203] Kushmerick J G, Naciri J, Yang J C and Shashidhar R 2003 Conductance scaling of molecular wires in parallel Nano Lett. 3 897-900

    [204] Snider G, Kuekes P, Hogg T and Williams R S 2005 Nanoelectronic architectures Appl. Phys. A 80 1183-95

    [205] Stan M R, Franzon P D, Goldstein S C, Lach J C and Ziegler M M 2003 Molecular electronics: from devices and interconnect to circuits and architecture Proc. IEEE 91 1940-57

    [206] Green J E et al 2007 A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre Nature 445 414-7

    [207] Park S, Wang G, Cho B, Kim Y, Song S, Ji Y, Yoon M-H and Lee T 2012 Flexible molecular-scale electronic devices Nat. Nanotechnol. 7 438-42

    [208] Morteza Najarian A, Szeto B, Tefashe U M and McCreery R L 2016 Robust all-carbon molecular junctions on flexible or semi-transparent substrates using ‘process-friendly’ fabrication ACS Nano 10 8918-28

    [209] Puebla-Hellmann G, Venkatesan K, Mayor M and Lortscher E 2018 Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices Nature 559 232-5

    [210] Kos D, Assumpcao D R, Guo C and Baumberg J J 2021 Quantum tunneling induced optical rectification and plasmon-enhanced photocurrent in nanocavity molecular junctions ACS Nano 15 14535-43

    [211] Wan A, Suchand Sangeeth C S, Wang L, Yuan L, Jiang L and Nijhuis C A 2015 Arrays of high quality SAM-based junctions and their application in molecular diode based logic Nanoscale 7 19547-56

    [212] Luo Y et al 2002 Two-dimensional molecular electronics circuits ChemPhysChem 3 519-25

    [213] Melosh N A, Boukai A, Diana F, Gerardot B, Badolato A, Petroff P M and Heath J R 2003 Ultrahigh-density nanowire lattices and circuits Science 300 112-5

    [214] Kaliginedi V, Moreno-Garcia P, Valkenier H, Hong W, Garcia-Suárez V M, Buiter P, Otten J L H, Hummelen J C, Lambert C J and Wandlowski T 2012 Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires J. Am. Chem. Soc. 134 5262-75

    [215] Huang C, Rudnev A V, Hong W and Wandlowski T 2015 Break junction under electrochemical gating: testbed for single-molecule electronics Chem. Soc. Rev. 44 889-901

    [216] Choi S H, Risko C, Delgado M C R, Kim B, Brédas J-L and Frisbie C D 2010 Transition from tunneling to hopping transport in long, conjugated oligo-imine wires connected to metals J. Am. Chem. Soc. 132 4358-68

    [217] Hines T, Diez-Perez I, Hihath J, Liu H, Wang Z-S, Zhao J, Zhou G, Mullen K and Tao N 2010 Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence J. Am. Chem. Soc. 132 11658-64

    [218] Ho Choi S, Kim B and Frisbie C D 2008 Electrical resistance of long conjugated molecular wires Science 320 1482-6

    [219] Lu Q, Liu K, Zhang H, Du Z, Wang X and Wang F 2009 From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s ACS Nano 3 3861-8

    [220] Moreno-Garcia P et al 2013 Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution J. Am. Chem. Soc. 135 12228-40

    [221] Zhao X, Huang C, Gulcur M, Batsanov A S, Baghernejad M, Hong W, Bryce M R and Wandlowski T 2013 Oligo(aryleneethynylene)s with terminal pyridyl groups: synthesis and length dependence of the tunneling-to-hopping transition of single-molecule conductances Chem. Mater. 25 4340-7

    [222] Wang W, Lee T and Reed M A 2003 Mechanism of electron conduction in self-assembled alkanethiol monolayer devices Phys. Rev. B 68 035416

    [223] Venkataraman L, Klare J E, Tam I W, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Single-molecule circuits with well-defined molecular conductance Nano Lett. 6 458-62

    [224] Li X, He J, Hihath J, Xu B, Lindsay S M and Tao N 2006 Conductance of single alkanedithiols: conduction mechanism and effect of molecule-electrode contacts J. Am. Chem. Soc. 128 2135-41

    [225] Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C and Venkataraman L 2007 Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines J. Am. Chem. Soc. 129 15768-9

    [226] Quinn J R, Foss F W, Venkataraman L and Breslow R 2007 Oxidation potentials correlate with conductivities of aromatic molecular wires J. Am. Chem. Soc. 129 12376-7

    [227] Liu K, Wang X and Wang F 2008 Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level ACS Nano 2 2315-23

    [228] Wen H-M, Yang Y, Zhou X-S, Liu J-Y, Zhang D-B, Chen Z-B, Wang J-Y, Chen Z-N and Tian Z-Q 2013 Electrical conductance study on 1,3-butadiyne-linked dinuclear ruthenium(ii) complexes within single molecule break junctions Chem. Sci. 4 2471-7

    [229] Algethami N, Sadeghi H, Sangtarash S and Lambert C J 2018 The conductance of porphyrin-based molecular nanowires increases with length Nano Lett. 18 4482-6

    [230] Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton J B, Nuckolls C and Venkataraman L 2014 Tunable charge transport in single-molecule junctions via electrolytic gating Nano Lett. 14 1400-4

    [231] Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A and Evers F 2008 Charge transport in single Au |alkanedithiol| Au junctions: coordination geometries and conformational degrees of freedom J. Am. Chem. Soc. 130 318-26

    [232] Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B and Venkataraman L 2009 Mechanically controlled binary conductance switching of a single-molecule junction Nat. Nanotechnol. 4 230-4

    [233] Vonlanthen D, Mishchenko A, Elbing M, Neuburger M, Wandlowski T and Mayor M 2009 Chemically controlled conductivity: torsion-angle dependence in a single-molecule biphenyldithiol junction Angew. Chem., Int. Ed. 48 8886-90

    [234] You S, J-T L, Guo J and Jiang Y 2017 Recent advances in inelastic electron tunneling spectroscopy Adv. Phys. X 2 907-36

    [235] Smit R H M, Noat Y, Untiedt C, Lang N D, van Hemert M C and van Ruitenbeek J M 2002 Measurement of the conductance of a hydrogen molecule Nature 419 906-9

    [236] Stipe B C, Rezaei M A and Ho W 1998 Single-molecule vibrational spectroscopy and microscopy Science 280 1732-5

    [237] Kim Y, Song H, Strigl F, Pernau H-F, Lee T and Scheer E 2011 Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation Phys. Rev. Lett. 106 196804

    [238] Long D P, Lazorcik J L, Mantooth B A, Moore M H, Ratner M A, Troisi A, Yao Y, Ciszek J W, Tour J M and Shashidhar R 2006 Effects of hydration on molecular junction transport Nat. Mater. 5 901-8

    [239] Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H and Murakoshi K 2013 Single molecule dynamics at a mechanically controllable break junction in solution at room temperature J. Am. Chem. Soc. 135 1009-14

    [240] Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P and Natelson D 2008 Simultaneous measurements of electronic conduction and Raman response in molecular junctions Nano Lett. 8 919-24

    [241] Yoon H P, Maitani M M, Cabarcos O M, Cai L, Mayer T S and Allara D L 2010 Crossed-nanowire molecular junctions: a new multispectroscopy platform for conduction-structure correlations Nano Lett. 10 2897-902

    [242] de Nijs B et al 2017 Plasmonic tunnel junctions for single-molecule redox chemistry Nat. Commun. 8 994

    [243] Guo C et al 2018 Molecular orbital gating surface-enhanced Raman scattering ACS Nano 12 11229-35

    [244] Zhao Z et al 2018 Shaping the atomic-scale geometries of electrodes to control optical and electrical performance of molecular devices Small 14 1703815

    [245] Bi H, Palma C-A, Gong Y, Hasch P, Elbing M, Mayor M, Reichert J and Barth J V 2018 Voltage-driven conformational switching with distinct Raman signature in a single-molecule junction J. Am. Chem. Soc. 140 4835-40

    [246] Kos D, Di Martino G, Boehmke A, de Nijs B, Berta D, Foldes T, Sangtarash S, Rosta E, Sadeghi H and Baumberg J J 2020 Optical probes of molecules as nano-mechanical switches Nat. Commun. 11 5905

    [247] Domulevicz L, Jeong H, Paul N K, Gomez-Diaz J S and Hihath J 2021 Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity Angew. Chem., Int. Ed. 60 16436-41

    [248] Ludoph B and Ruitenbeek J M V 1999 Thermopower of atomic-size metallic contacts Phys. Rev. B 59 12290-3

    [249] Reddy P, Jang S-Y, Segalman Rachel A and Majumdar A 2007 Thermoelectricity in molecular junctions Science 315 1568-71

    [250] Tan A, Sadat S and Reddy P 2010 Measurement of thermopower and current-voltage characteristics of molecular junctions to identify orbital alignment Appl. Phys. Lett. 96 013110

    [251] Elbing M, Ochs R, Koentopp M, Fischer M, von Hanisch C, Weigend F, Evers F, Weber H B and Mayor M 2005 A single-molecule diode Proc. Natl Acad. Sci. USA 102 8815

    [252] Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C and Venkataraman L 2013 Tuning rectification in single-molecular diodes Nano Lett. 13 6233-7

    [253] Capozzi B, Xia J, Adak O, Dell E J, Liu Z-F, Taylor J C, Neaton J B, Campos L M and Venkataraman L 2015 Single-molecule diodes with high rectification ratios through environmental control Nat. Nanotechnol. 10 522-7

    [254] Ke G, Duan C, Huang F and Guo X 2020 Electrical and spin switches in single-molecule junctions InfoMat 2 92-112

    [255] Song H, Reed M A and Lee T 2011 Single molecule electronic devices Adv. Mater. 23 1583-608

    [256] Dulic D, van der Molen S J, Kudernac T, Jonkman H T, de Jong J J D, Bowden T N, van Esch J, Feringa B L and van Wees B J 2003 One-way optoelectronic switching of photochromic molecules on gold Phys. Rev. Lett. 91 207402

    [257] Odell A, Delin A, Johansson B, Rungger I and Sanvito S 2010 Investigation of the conducting properties of a photoswitching dithienylethene molecule ACS Nano 4 2635-42

    [258] Pars M, Hofmann C C, Willinger K, Bauer P, Thelakkat M and Kohler J 2011 An organic optical transistor operated under ambient conditions Angew. Chem., Int. Ed. 50 11405-8

    [259] He J et al 2005 Switching of a photochromic molecule on gold electrodes: single-molecule measurements Nanotechnology 16 695-702

    [260] Meng F, Hervault Y-M, Shao Q, Hu B, Norel L, Rigaut S and Chen X 2014 Orthogonally modulated molecular transport junctions for resettable electronic logic gates Nat. Commun. 5 3023

    [261] Cao Y, Dong S, Liu S, Liu Z and Guo X 2013 Toward functional molecular devices based on graphene-molecule junctions Angew. Chem., Int. Ed. 52 3906-10

    [262] Kumar A S, Ye T, Takami T, Yu B-C, Flatt A K, Tour J M and Weiss P S 2008 Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments Nano Lett. 8 1644-8

    [263] Pakula C, Zaporojtchenko V, Strunskus T, Zargarani D, Herges R and Faupel F 2010 Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites Nanotechnology 21 465201

    [264] Smaali K, Lenfant S, Karpe S, Ocafrain M, Blanchard P, Deresmes D, Godey S, Rochefort A, Roncali J and Vuillaume D 2010 High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems ACS Nano 4 2411-21

    [265] Jia C et al 2016 Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity Science 352 1443-5

    [266] Jia C, Wang J, Yao C, Cao Y, Zhong Y, Liu Z, Liu Z and Guo X 2013 Conductance switching and mechanisms in single-molecule junctions Angew. Chem., Int. Ed. 52 8666-70

    [267] Tsuji Y and Hoffmann R 2014 Frontier orbital control of molecular conductance and its switching Angew. Chem., Int. Ed. 53 4093-7

    [268] Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W, Royal G and Wandlowski T 2013 Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions J. Am. Chem. Soc. 135 5974-7

    [269] Broman S L, Lara-Avila S, Thisted C L, Bond A D, Kubatkin S, Danilov A and Nielsen M B 2012 Dihydroazulene photoswitch operating in sequential tunneling regime: synthesis and single-molecule junction studies Adv. Funct. Mater. 22 4249-58

    [270] Lara-Avila S, Danilov A V, Kubatkin S E, Broman S L, Parker C R and Nielsen M B 2011 Light-triggered conductance switching in single-molecule dihydroazulene/vinylheptafulvene junctions J. Phys. Chem. C 115 18372-7

    [271] Li T et al 2013 Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions Adv. Mater. 25 4164-70

    [272] Seo S, Min M, Lee S M and Lee H 2013 Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes Nat. Commun. 4 1920

    [273] Battacharyya S, Kibel A, Kodis G, Liddell P A, Gervaldo M, Gust D and Lindsay S 2011 Optical modulation of molecular conductance Nano Lett. 11 2709-14

    [274] Orbelli Biroli A et al 2011 A multitechnique physicochemical investigation of various factors controlling the photoaction spectra and of some aspects of the electron transfer for a series of push-pull Zn(II) porphyrins acting as dyes in DSSCs J. Phys. Chem. C 115 23170-82

    [275] Klajn R 2014 Spiropyran-based dynamic materials Chem. Soc. Rev. 43 148-84

    [276] Cai S et al 2019 Light-driven reversible intermolecular proton transfer at single-molecule junctions Angew. Chem., Int. Ed. 58 3829-33

    [277] Zhang X, Hou L and Samori P 2016 Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials Nat. Commun. 7 11118

    [278] Taniguchi M, Tsutsui M, Yokota K and Kawai T 2010 Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal-molecule-metal junctions Chem. Sci. 1 247-53

    [279] Ferri N, Algethami N, Vezzoli A, Sangtarash S, McLaughlin M, Sadeghi H, Lambert C J, Nichols R J and Higgins S J 2019 Hemilabile ligands as mechanosensitive electrode contacts for molecular electronics Angew. Chem., Int. Ed. 58 16583-9

    [280] Diez-Perez I, Hihath J, Hines T, Wang Z-S, Zhou G, Mullen K and Tao N 2011 Controlling single-molecule conductance through lateral coupling of π orbitals Nat. Nanotechnol. 6 226-31

    [281] Meisner J S, Kamenetska M, Krikorian M, Steigerwald M L, Venkataraman L and Nuckolls C 2011 A single-molecule potentiometer Nano Lett. 11 1575-9

    [282] Wu C, Bates D, Sangtarash S, Ferri N, Thomas A, Higgins S J, Robertson C M, Nichols R J, Sadeghi H and Vezzoli A 2020 Folding a single-molecule junction Nano Lett. 20 7980-6

    [283] Su T A, Li H, Steigerwald M L, Venkataraman L and Nuckolls C 2015 Stereoelectronic switching in single-molecule junctions Nat. Chem. 7 215-20

    [284] Franco I, George C B, Solomon G C, Schatz G C and Ratner M A 2011 Mechanically activated molecular switch through single-molecule pulling J. Am. Chem. Soc. 133 2242-9

    [285] Walkey M C et al 2019 Chemically and mechanically controlled single-molecule switches using spiropyrans ACS Appl. Mat. Interfaces 11 36886-94

    [286] Bruot C, Hihath J and Tao N 2012 Mechanically controlled molecular orbital alignment in single molecule junctions Nat. Nanotechnol. 7 35-40

    [287] Li Y, Haworth N L, Xiang L, Ciampi S, Coote M L and Tao N 2017 Mechanical stretching-induced electron-transfer reactions and conductance switching in single molecules J. Am. Chem. Soc. 139 14699-706

    [288] Stefani D, Weiland K J, Skripnik M, Hsu C, Perrin M L, Mayor M, Pauly F and van der Zant H S J 2018 Large conductance variations in a mechanosensitive single-molecule junction Nano Lett. 18 5981-8

    [289] Camarasa-Gómez M, Hernangómez-Pérez D, Inkpen M S, Lovat G, Fung E D, Roy X, Venkataraman L and Evers F 2020 Mechanically tunable quantum interference in ferrocene-based single-molecule junctions Nano Lett. 20 6381-6

    [290] Tang C et al 2020 Electric-field-induced connectivity switching in single-molecule junctions iScience 23 100770

    [291] Meng L et al 2019 Side-group chemical gating via reversible optical and electric control in a single molecule transistor Nat. Commun. 10 1450

    [292] Alemani M, Peters M V, Hecht S, Rieder K-H, Moresco F and Grill L 2006 Electric field-induced isomerization of azobenzene by STM J. Am. Chem. Soc. 128 14446-7

    [293] Li H B, Tebikachew B E, Wiberg C, Moth-Poulsen K and Hihath J 2020 A memristive element based on an electrically controlled single-molecule reaction Angew. Chem., Int. Ed. 59 11641-6

    [294] Godlewski S, Kawai H, Kolmer M, Zuzak R, Echavarren A M, Joachim C, Szymonski M and Saeys M 2016 Single-molecule rotational switch on a dangling bond dimer bearing ACS Nano 10 8499-507

    [295] Zhang L et al 2018 Electrochemical and electrostatic cleavage of alkoxyamines J. Am. Chem. Soc. 140 766-74

    [296] Xin N et al 2021 Tunable symmetry-breaking-induced dual functions in stable and photoswitched single-molecule junctions J. Am. Chem. Soc. 143 20811-7

    [297] Fahad H M, Hu C and Hussain M M 2015 Simulation study of a 3D device integrating FinFET and UTBFET IEEE Trans. Electron Devices 62 83-87

    [298] Yadav C, Kushwaha P, Khandelwal S, Duarte J P, Chauhan Y S and Hu C 2014 Modeling of GaN-based normally-off FinFET IEEE Electron Device Lett. 35 612-4

    [299] Lee B-H, Hur J, Kang M-H, Bang T, Ahn D-C, Lee D, Kim K-H and Choi Y-K 2016 A vertically integrated junctionless nanowire transistor Nano Lett. 16 1840-7

    [300] Lee B-H, Kang M-H, Ahn D-C, Park J-Y, Bang T, Jeon S-B, Hur J, Lee D and Choi Y-K 2015 Vertically integrated multiple nanowire field effect transistor Nano Lett. 15 8056-61

    [301] Gaudenzi R, de Bruijckere J, Reta D, Moreira I D P R, Rovira C, Veciana J, van der Zant H S J and Burzuri E 2017 Redox-induced gating of the exchange interactions in a single organic diradical ACS Nano 11 5879-83

    [302] Hofmeister C, Hartle R, Rubio-Pons O, Coto P B, Sobolewski A L and Thoss M 2014 Switching the conductance of a molecular junction using a proton transfer reaction J. Mol. Model. 20 2163

    [303] Weckbecker D, Coto P B and Thoss M 2021 Molecular transistor controlled through proton transfer J. Phys. Chem. Lett. 12 413-7

    [304] Zhang J, Kuznetsov A M, Medvedev I G, Chi Q, Albrecht T, Jensen P S and Ulstrup J 2008 Single-molecule electron transfer in electrochemical environments Chem. Rev. 108 2737-91

    [305] Lovat G, Choi B, Paley D W, Steigerwald M L, Venkataraman L and Roy X 2017 Room-temperature current blockade in atomically defined single-cluster junctions Nat. Nanotechnol. 12 1050-4

    [306] Xin N, Li X, Jia C, Gong Y, Li M, Wang S, Zhang G, Yang J and Guo X 2018 Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating Angew. Chem., Int. Ed. 57 14026-31

    [307] Sanvito S 2011 Molecular spintronics Chem. Soc. Rev. 40 3336-55

    [308] Naaman R and Waldeck D H 2015 Spintronics and chirality: spin selectivity in electron transport through chiral molecules Annu. Rev. Phys. Chem. 66 263-81

    [309] Senthil Kumar K and Ruben M 2017 Emerging trends in spin crossover (SCO) based functional materials and devices Coord. Chem. Rev. 346 176-205

    [310] Brooke R J, Jin C, Szumski D S, Nichols R J, Mao B-W, Thygesen K S and Schwarzacher W 2015 Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface Nano Lett. 15 275-80

    [311] Li J, Wu Q, Xu W, Wang H-C, Zhang H, Chen Y, Tang Y, Hou S, Lambert C J and Hong W 2021 Room-temperature single-molecule conductance switch via confined coordination-induced spin-state manipulation CCS Chem. 1744-52

    [312] Naaman R and Waldeck D H 2012 Chiral-induced spin selectivity effect J. Phys. Chem. Lett. 3 2178-87

    [313] Suda M, Thathong Y, Promarak V, Kojima H, Nakamura M, Shiraogawa T, Ehara M and Yamamoto H M 2019 Light-driven molecular switch for reconfigurable spin filters Nat. Commun. 10 2455

    [314] Zou D, Zhao W, Cui B, Li D and Liu D 2018 Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor Phys. Chem. Chem. Phys. 20 2048-56

    [315] Huang X et al 2019 Electric field-induced selective catalysis of single-molecule reaction Sci. Adv. 5 eaaw3072

    [316] Moreno-Pineda E, Klyatskaya S, Du P, Damjanovic M, Taran G, Wernsdorfer W and Ruben M 2018 Observation of cooperative electronic quantum tunneling: increasing accessible nuclear states in a molecular qudit Inorg. Chem. 57 9873-9

    [317] Wernsdorfer W and Ruben M 2019 Synthetic Hilbert space engineering of molecular qudits: isotopologue chemistry Adv. Mater. 31 1806687

    [318] Winkelmann C B, Roch N, Wernsdorfer W, Bouchiat V and Balestro F 2009 Superconductivity in a single-C60 transistor Nat. Phys. 5 876-9

    [319] Goswami S et al 2020 Charge disproportionate molecular redox for discrete memristive and memcapacitive switching Nat. Nanotechnol. 15 380-9

    [320] Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M and Wernsdorfer W 2014 Electrically driven nuclear spin resonance in single-molecule magnets Science 344 1135-8

    Yi Zhao, Wenqing Liu, Jiaoyang Zhao, Yasi Wang, Jueting Zheng, Junyang Liu, Wenjing Hong, Zhong-Qun Tian. The fabrication, characterization and functionalization in molecular electronics[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 22003
    Download Citation