• Photonics Research
  • Vol. 13, Issue 6, 1544 (2025)
Can Zou1,†, Qing Liu1,†, Lu Zhang1, Xiao Tang2..., Xiaohang Li2, Shuti Li1,3,* and Fangliang Gao1,4,*|Show fewer author(s)
Author Affiliations
  • 1Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Guangzhou 510631, China
  • 2Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, CEMSE Division King Abdullah University of Science and Technology, Thuwal 239556900, Saudi Arabia
  • 3e-mail: lishuti@scnu.edu.cn
  • 4e-mail: gaofl@m.scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.555789 Cite this Article Set citation alerts
    Can Zou, Qing Liu, Lu Zhang, Xiao Tang, Xiaohang Li, Shuti Li, Fangliang Gao, "High-performance UV polarization sensitive photodetector for a graphene(2D)/GaN(3D) junction with a non-centrosymmetric electric field," Photonics Res. 13, 1544 (2025) Copy Citation Text show less
    References

    [1] F. H. L. Koppens, T. Mueller, P. Avouris. Photodetectors based on graphene other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [2] Z. Zheng, J. Yao, J. Li. Non-layered 2D materials toward advanced photoelectric devices: progress and prospects. Mater. Horiz., 7, 2185-2207(2020).

    [3] A. Afzalipour, M. S. Zare, A. Attariabad. Tunable graphene-based absorber using nanoscale grooved metal film at telecommunication wavelengths. Adv. Photonics Res., 5, 2300013(2024).

    [4] M. N. Hamza, M. T. Islam, S. Lavadiya. Development of a terahertz metamaterial micro-biosensor for ultrasensitive multispectral detection of early stage cervical cancer. IEEE Sens. J., 24, 32065-32079(2024).

    [5] M. N. Hamza, M. T. Islam, S. Koziel. Designing a high-sensitivity microscale triple-band biosensor based on terahertz MTMs to provide a perfect absorber for non-melanoma skin cancer diagnostic. IEEE Photonics J., 16(2024).

    [6] M. N. Hamza, M. Tariqul Islam, S. Lavadiya. Ultra-compact quintuple-band terahertz metamaterial biosensor for enhanced blood cancer diagnostics. PLOS ONE, 20, e0313874(2025).

    [7] A. Farmani, A. Mir, Z. Sharifpour. Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl. Surf. Sci., 453, 358-364(2018).

    [8] Q. Li, Z. Li, N. Li. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci. Rep., 4, 6332(2014).

    [9] J. Zhang, J. Zhao, Y. Zhou. Polarization-sensitive photodetector using patterned perovskite single-crystalline thin films. Adv. Opt. Mater., 9, 2100524(2021).

    [10] L. Li, W. Han, L. Pi. Emerging in-plane anisotropic two-dimensional materials. InfoMat, 1, 54-73(2019).

    [11] P. V. Shinde, A. Tripathi, R. Thapa. Nanoribbons of 2D materials: a review on emerging trends recent developments and future perspectives. Coord. Chem. Rev., 453, 214335(2022).

    [12] M. A. Saeed, A. Shahzad, K. Rasool. 2D MXene: a potential candidate for photovoltaic cells? A critical review. Adv. Sci., 9, 2104743(2022).

    [13] J. Wang, C. Jiang, W. Li. Anisotropic low-dimensional materials for polarization-sensitive photodetectors: from materials to devices. Adv. Opt. Mater., 10, 2102436(2022).

    [14] H. Yuan, X. Liu, F. Afshinmanesh. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol., 10, 707-713(2015).

    [15] J.-M. Oh, C. C. Venters, C. Di. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat. Commun., 11, 1(2020).

    [16] Y. Cui, Z. Zhou, X. Wang. Wavelength-selectivity polarization dependence of optical absorption and photoresponse in SnS nanosheets. Nano. Res., 14, 2224-2230(2021).

    [17] A. K. Geim. Graphene: status and prospects. Science, 324, 1530-1534(2009).

    [18] M. Liu, X. Yin, E. Ulin-Avila. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [19] A. F. Carvalho, B. Kulyk, A. J. S. Fernandes. A review on the applications of graphene in mechanical transduction. Adv. Mater., 34, 2101326(2022).

    [20] C. Pan, Q. Ma, S. Liu. Angularly anisotropic tunability of upconversion luminescence by tuning plasmonic local-field responses in gold nanorods antennae with different configurations. Nanophotonics, 11, 2349-2359(2022).

    [21] T. J. Echtermeyer, L. Britnell, P. K. Jasnos. Strong plasmonic enhancement of photovoltage in grapheme. Nat. Commun., 2, 458(2011).

    [22] L. Liu, Y. Liu, T. Gong. Graphene-based polarization-sensitive longwave infrared photodetector. Nanotechnology, 30, 435205(2019).

    [23] Q. Liu, J. Shi, X. Wang. Enhanced photoresponse of single GaN microwire ultraviolet photodetectors by heteroepitaxial AlN coating layer. Adv Mater. Technol., 6, 2100226(2021).

    [24] J. Yin, L. Liu, Y. Zang. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light Sci. Appl., 10, 113(2021).

    [25] Q. Liu, W. Song, X. Wang. Fowler-Nordheim tunneling mechanism for performance improvement in graphene 2D/GaN 3D heterojunction ultraviolet photodetector. Carbon, 201, 1061-1067(2023).

    [26] C. Zou, Z. Zhao, M. Xu. GaN/Gr (2D)/Si (3D) combined high-performance hot electron transistors. ACS Nano, 17, 8262-8270(2023).

    [27] A. Woessner, P. Alonso-González, M. B. Lundeberg. Near-field photocurrent nanoscopy on bare and encapsulated grapheme. Nat. Commun., 7, 10783(2016).

    [28] N. M. Gabor, J. C. W. Song, Q. Ma. Hot carrier–assisted intrinsic photoresponse in graphene. Science, 334, 648-652(2011).

    [29] Y. Dai, Z. Zhou, A. Ghosh. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [30] X. Zhang, L. Li, C. Ji. Rational design of high-quality 2D/3D perovskite heterostructure crystals for record-performance polarization-sensitive photodetection. Natl. Sci. Rev., 8, nwab044(2021).

    [31] Y. Xin, X. Wang, Z. Chen. Polarization-sensitive self-powered Type-II GeSe/MoS2 van der Waals heterojunction photodetector. ACS Appl. Mater. Interfaces, 12, 15406-15413(2020).

    [32] M. Xiao, H. Yang, W. Shen. Symmetry-reduction enhanced polarization-sensitive photodetection in core–shell SbI3/Sb2O3 van der Waals heterostructure. Small, 16, 1907172(2020).

    [33] J. Sun, J. Zhou, B. Li. Indefinite permittivity and negative refraction in natural material: graphite. Appl. Phys. Lett., 98, 101901(2011).

    [34] Y. Zeng, Q. Ou, L. Liu. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals. Nano Lett., 22, 4260-4268(2022).

    [35] C. Fan, X. Sun, Z. Shi. Wafer-scale fabrication of graphene-based plasmonic photodetector with polarization-sensitive broadband and enhanced response. Adv. Opt. Mater., 11, 2202860(2023).

    [36] D. Zhang, J. Zhou, C. Liu. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors. J. Appl. Phys., 126, 074301(2019).

    [37] J. Li, C. Zhao, B. Liu. Metamaterial grating-integrated graphene photodetector with broadband high responsivity. Appl. Surf. Sci., 473, 633-640(2019).

    [38] Y. M. Zuev, W. Chang, P. Kim. Thermoelectric and magneto thermoelectric transport measurements of grapheme. Phys. Rev. Lett., 102, 096807(2009).

    [39] S. Kim, J. Nah, I. Jo. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett., 94, 062107(2009).

    [40] S. Chen, Z. Han, M. M. Elahi. Electron optics with p-n junctions in ballistic grapheme. Science, 353, 1522-1525(2016).

    [41] T. M. H. Nguyen, S. G. Shin, H. W. Choi. Recent advances in self-powered and flexible UVC photodetectors. Exploration, 2, 20210078(2022).

    [42] C.-Y. Wu, Z. Wang, L. Liang. Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small, 15, 1900730(2019).

    [43] C. Fang, H. Wang, Z. Shen. High-performance photodetectors based on lead-free 2D Ruddlesden–Popper Perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 11, 8419-8427(2019).

    [44] Z. Luo, H. Xu, W. Gao. High-performance and polarization-sensitive imaging photodetector based on WS2/Te tunneling heterostructure. Small, 19, 2207615(2023).

    [45] J. Lu, Z. Zheng, J. Yao. 2D In2S3 nanoflake coupled with graphene toward high-sensitivity and fast-response bulk-silicon schottky photodetector. Small, 15, 1904912(2019).

    [46] W. Gao, Z. Zheng, Y. Li. Out of plane stacking of InSe-based heterostructures towards high performance electronic and optoelectronic devices using a graphene electrode. J. Mater. Chem., 6, 12509-12517(2018).

    [47] J. Lu, Z. Zheng, J. Yao. An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response. Nanoscale, 12, 7196-7205(2020).

    [48] T. Li, W. Song, L. Zhang. Self-powered asymmetric metal–semiconductor–metal AlN deep ultraviolet detector. Opt. Lett., 47, 637-640(2022).

    [49] T. Li, L. Long, Z. Hu. Three-dimensional metal–semiconductor–metal AlN deep-ultraviolet detector. Opt. Lett., 45, 3325-3328(2020).

    Can Zou, Qing Liu, Lu Zhang, Xiao Tang, Xiaohang Li, Shuti Li, Fangliang Gao, "High-performance UV polarization sensitive photodetector for a graphene(2D)/GaN(3D) junction with a non-centrosymmetric electric field," Photonics Res. 13, 1544 (2025)
    Download Citation