• Optical Instruments
  • Vol. 44, Issue 4, 49 (2022)
Jinlei FEI1,2 and Jian LIN1,2,*
Author Affiliations
  • 1Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2022.004.007 Cite this Article
    Jinlei FEI, Jian LIN. Circularly polarized broadband CARS spectroscopy for non-resonant background removal[J]. Optical Instruments, 2022, 44(4): 49 Copy Citation Text show less
    References

    [1] CHENG J X, VOLKMER A, XIE X S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy[J]. Journal of the Optical Society of America B, 19, 1363-1375(2002).

    [2] LI S W, LI Y P, YI R X, et al. Coherent anti-stokes Raman scattering microscopy and its applications[J]. Frontiers in Physics, 8, 598420(2020).

    [3] CHENG J X, VOLKMER A, BOOK L D, et al. An Epi-detected coherent anti-stokes Raman Scattering (E-CARS) microscope with high spectral resolution and high sensitivity[J]. The Journal of Physical Chemistry B, 105, 1277-1280(2001).

    [4] CHENG J X, BOOK L D, XIE X S. Polarization coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 26, 1341-1343(2001).

    [5] VOLKMER A, BOOK L D, XIE X S. Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay[J]. Applied Physics Letters, 80, 1505-1507(2002).

    [6] UPPUTURI P K, GONG L, WANG H F. Chirped time-resolved CARS microscopy with square-pulse excitation[J]. Optics Express, 22, 9611-9626(2014).

    [7] EVANS C L, POTMA E O, XIE X S. Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy[J]. Optics Letters, 29, 2923-2925(2004).

    [8] POTMA E O, EVANS C L, XIE X S. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging[J]. Optics Letters, 31, 241-243(2006).

    [9] GANIKHANOV F, EVANS C L, SAAR B G, et al. High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy[J]. Optics Letters, 31, 1872-1874(2006).

    [10] KONOROV S O, BLADES M W, TURNER R F B. Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-stokes Raman scattering spectroscopy and microscopy[J]. Applied Spectroscopy, 64, 767-774(2010).

    [11] OGILVIE J P, BEAUREPAIRE E, ALEXANDROU A, et al. Fourier-transform coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 31, 480-482(2006).

    [12] TAMAMITSU M, SAKAKI Y, NAKAMURA T, et al. Ultrafast broadb Fouriertransfm CARS spectroscopy operating at 50, 000 spectrasecond[C]Proceedings of SPIE 10076, HighSpeed Biomedical Imaging Spectroscopy: Toward Big Data Instrumentation Management II. San Francisco: SPIE, 2017: 10076.

    [13] CHENG J X, XIE X S. Coherent Raman scattering microscopy[M]. Boca Raton: CRC Press, 2016: 237251.

    [14] VALENSISE C M, GIUSEPPI A, VERNUCCIO F, et al. Removing non-resonant background from CARS spectra via deep learning[J]. APL Photonics, 5, 061305(2020).

    [15] UPPUTURI P K, LIN J, GONG L, et al. Circularly polarized coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 38, 1262-1264(2013).

    [16] ZHANG C, WANG J, DING B, et al. Quantitative spectral analysis of coherent anti-stokes Raman scattering signals: C-H stretching modes of the methyl group[J]. The Journal of Physical Chemistry B, 118, 7647-7656(2014).

    [17] KAN Y, LENSU L, HEHL G, et al. Wavelet prism decomposition analysis applied to CARS spectroscopy: a tool for accurate and quantitative extraction of resonant vibrational responses[J]. Optics Express, 24, 11905-11916(2016).

    [18] HEUKE S, RIGNEAULT H. Laser scanning dark-field coherent anti-Stokes Raman scattering (DF-CARS): a numerical study[J]. Optics Express, 29, 3985-3995(2021).

    [19] MUNHOZ F, BRUSTLEIN S, BRASSELET S, et al. Polarizationresolved coherent antiStokes Raman scattering microscopy[C]Proceedings of SPIE 7569, Multiphoton Microscopy in the Biomedical Sciences X. San Francisco: SPIE, 2010: 75690P.

    [20] FALCONIERI M, MARROCCO M, MERLA C, et al. Characterization of supercontinuum generation in a photonic crystal fiber for uses in multiplex CARS microspectroscopy[J]. Journal of Raman Spectroscopy, 50, 1287-1295(2019).

    [21] PQUEZ J G, KFANTY E P, SLEPKOV A D. Ultrabroadb coherent antiStokes Raman scattering microscopy with a dynamically powertuned Stokes supercontinuum[C]Proceedings of SPIE 10069, Multiphoton Microscopy in the Biomedical Sciences XVII. San Francisco: SPIE, 2017: 10069.

    Jinlei FEI, Jian LIN. Circularly polarized broadband CARS spectroscopy for non-resonant background removal[J]. Optical Instruments, 2022, 44(4): 49
    Download Citation