• Advanced Imaging
  • Vol. 1, Issue 2, 021002 (2024)
Siming Zheng1,†, Yujia Xue2, Waleed Tahir2, Zhengjue Wang3..., Hao Zhang4, Ziyi Meng5, Gang Qu1, Siwei Ma6 and Xin Yuan1,*|Show fewer author(s)
Author Affiliations
  • 1Research Center for Industries of the Future (RCIF) and School of Engineering, Westlake University, Hangzhou, China
  • 2Department of Electrical and Computer Engineering, Boston University, Boston, USA
  • 3National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an, China
  • 4State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, China
  • 5Westlake Intelligent Vision Technology, Hangzhou, China
  • 6School of Computer Science, Peking University, Beijing, China
  • show less
    DOI: 10.3788/AI.2024.10006 Cite this Article Set citation alerts
    Siming Zheng, Yujia Xue, Waleed Tahir, Zhengjue Wang, Hao Zhang, Ziyi Meng, Gang Qu, Siwei Ma, Xin Yuan, "Block-modulating video compression: an ultralow complexity image compression encoder for resource-limited platforms," Adv. Imaging 1, 021002 (2024) Copy Citation Text show less
    References

    [1] D. Le Gall. MPEG: a video compression standard for multimedia applications. Commun. ACM, 34, 46(1991).

    [2] R. Puri et al. Distributed video coding in wireless sensor networks. IEEE Signal Process Mag., 23, 94(2006).

    [3] W. Shi et al. Edge computing: vision and challenges. IEEE Internet Things J., 3, 637(2016).

    [4] S. H. Chan, X. Wang, O. A. Elgendy. Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging, 3, 84(2017).

    [5] E. K. Ryu et al. Plug and-play methods provably converge with properly trained denoisers, 5546(2019).

    [6] S. V. Venkatakrishnan, C. A. Bouman, B. Wohlberg. Plug-and-play priors for model based reconstruction, 945(2013).

    [7] S. Sreehari et al. Plug-and-play priors for bright field electron tomography and sparse interpolation. IEEE Trans. Comput. Imaging, 2, 408(2016).

    [8] X. Yuan et al. Plug-and-play algorithms for large-scale snapshot compressive imaging, 1447(2020).

    [9] E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489(2006).

    [10] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52, 1289(2006).

    [11] X. Yuan, D. J. Brady, A. K. Katsaggelos. Snapshot compressive imaging: theory, algorithms, and applications. IEEE Signal Process Mag., 38, 65(2021).

    [12] P. Llull et al. Coded aperture compressive temporal imaging. Opt. Express, 21, 10526(2013).

    [13] X. Yuan et al. Low-cost compressive sensing for color video and depth, 3318(2014).

    [14] M. Qiao et al. Deep learning for video compressive sensing. APL Photonics, 5, 030801(2020).

    [15] A. Wagadarikar et al. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt., 47, B44(2008).

    [16] Z. Meng, J. Ma, X. Yuan. End-to-end low cost compressive spectral imaging with spatial-spectral self-attention, 187(2020).

    [17] M. Qiao, X. Liu, X. Yuan. Snapshot spatial-temporal compressive imaging. Opt. Lett., 45, 1659(2020).

    [18] P. Llull et al. Image translation for single shot focal tomography. Optica, 2, 822(2015).

    [19] T.-H. Tsai et al. Spectral-temporal compressive imaging. Opt. Lett., 40, 4054(2015).

    [20] Y. Sun, X. Yuan, S. Pang. High-speed compressive range imaging based on active illumination. Opt. Express, 24, 22836(2016).

    [21] M. Qiao et al. Snapshot coherence tomographic imaging. IEEE Trans. Comput. Imaging, 7, 624(2021).

    [22] Y. Sun, X. Yuan, S. Pang. Compressive high-speed stereo imaging. Opt. Express, 25, 18182(2017).

    [23] M. F. Duarte et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag., 25, 83(2008).

    [24] A. Buades, B. Coll, J.-M. Morel. A non-local algorithm for image denoising, 60(2005).

    [25] K. Dabov et al. Image denoising with block-matching and 3D filtering. Proc. SPIE, 6064, 606414(2006).

    [26] Y. Lai et al. Single-shot ultraviolet compressed ultrafast photography. Laser Photonics Rev., 14, 2000122(2020).

    [27] J. Bioucas-Dias, M. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16, 2992(2007).

    [28] X. Yuan. Generalized alternating projection based total variation minimization for compressive sensing, 2539(2016).

    [29] Y. Liu et al. Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell., 41, 2990(2019).

    [30] X. Miao et al. λ-net: Reconstruct hyperspectral images from a snapshot measurement, 4059(2019).

    [31] Z. Cheng et al. Memory-efficient network for large-scale video compressive sensing, 16246(2021).

    [32] Y. Xue et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618(2019).

    [33] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181(2018).

    [34] J. Ma et al. Deep tensor ADMM-Net for snapshot compressive imaging, 10223(2019).

    [35] L. Wang et al. Hyperspectral image reconstruction using a deep spatial-spectral prior, 8024(2019).

    [36] Y. Li et al. End-to-end video compressive sensing using Anderson-accelerated unrolled networks, 1(2020).

    [37] T. Huang et al. Deep Gaussian scale mixture prior for spectral compressive imaging, 16216(2021).

    [38] K. Greger, Y. LeCun. Learning fast approximations of sparse coding, 399(2010).

    [39] Y. Yang et al. Deep ADMM-Net for compressive sensing MRI. Advances in Neural Information Processing Systems, 29, 10(2016).

    [40] C. A. Metzler, A. Mousavi, R. G. Baraniuk. Learned D-AMP: principled neural network based compressive image recovery, 1770(2017).

    [41] S. Zheng et al. Deep plug-and-play priors for spectral snapshot compressive imaging. Photonics Res., 9, B18(2021).

    [42] X. Yuan et al. Plug-and-play algorithms for video snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell., 44, 7093(2021).

    [43] K. Zhang, W. Zuo, L. Zhang. FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process., 27, 4608(2018).

    [44] M. Kellman et al. Memory-efficient learning for large-scale computational imaging. IEEE Trans. Comput. Imaging, 6, 1403(2020).

    [45] S. Jalali, X. Yuan. Snapshot compressed sensing: performance bounds and algorithms. IEEE Trans. Inf. Theory, 65, 8005(2019).

    [46] X. Liao, H. Li, L. Carin. Generalized alternating projection for weighted-2.1 minimization with applications to model-based compressive sensing. SIAM J. Imag. Sci., 7, 797(2014).

    [47] J. R. Hershey, J. L. Roux, F. Weninger. Deep unfolding: model-based inspiration of novel deep architectures(2014).

    [48] O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 9351, 234(2015).

    [49] S. Nah, T. Hyun Kim, K. Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring, 3883(2017).

    [50] F. Perazzi et al. A benchmark dataset and evaluation methodology for video object segmentation, 724(2016).

    [51] Z. Wang et al. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process., 13, 600(2004).

    [52] A. Mercat, M. Viitanen, J. Vanne. UVG dataset: 50/120 fps 4k sequences for video codec analysis and development, 297(2020).

    [53] Z. Zha et al. Image restoration via reconciliation of group sparsity and low-rank models,”. IEEE Trans. Image Process., 30, 5223(2021).

    [54] X. Yuan, R. Haimi-Cohen. Image compression based on compressive sensing: End-to-end comparison with jpeg. IEEE Trans. Multimedia, 22, 2889(2020).

    [55] J. Zhang, B. Ghanem. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing, 1828(2018).

    [56] X. Yuan, Y. Pu. Parallel lensless compressive imaging via deep convolutional neural networks. Opt. Express, 26, 1962(2018).

    [57] Lu Gan. Block compressed sensing of natural images, 403(2007).

    [58] D. You et al. Coast: controllable arbitrary-sampling network for compressive sensing. IEEE Trans. Image Process., 30, 6066(2021).

    [59] Z. Zha et al. Triply complementary priors for image restoration. IEEE Trans. Image Process., 30, 5819(2021).

    Siming Zheng, Yujia Xue, Waleed Tahir, Zhengjue Wang, Hao Zhang, Ziyi Meng, Gang Qu, Siwei Ma, Xin Yuan, "Block-modulating video compression: an ultralow complexity image compression encoder for resource-limited platforms," Adv. Imaging 1, 021002 (2024)
    Download Citation