• High Power Laser and Particle Beams
  • Vol. 32, Issue 11, 112010 (2020)
Qiannan Wang and Jianbo Hu*
Author Affiliations
  • State Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.200116 Cite this Article
    Qiannan Wang, Jianbo Hu. Recent progress in micro-mesoscopic study of dynamics of plastic deformation based on large-scale laser facilities[J]. High Power Laser and Particle Beams, 2020, 32(11): 112010 Copy Citation Text show less
    References

    [1] Shewmon P G, Zackay V F. Response of metals to high velocity defmation[M]. NewYk: Interscience Publisher, 1961: 93103

    [2] Murr L, Meyers M, Niou C S. Shock-induced deformation twinning in tantalum[J]. Acta materialia, 45, 157-175(1997).

    [3] Murr L E, Esquivel E. Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization[J]. Journal of Materials Science, 39, 1153-1168(2004).

    [4] Meyers M, Chen Y J, Marquis F. High-strain, high-strain-rate behavior of tantalum[J]. Metallurgical and Materials Transactions A, 26, 2493-2501(1995).

    [5] Meyers M A, Gregori F, Kad B. Laser-induced shock compression of monocrystalline copper: characterization and analysis[J]. Acta Materialia, 51, 1211-1228(2003).

    [6] Huang J, Gray III G. Substructure evolution and deformation modes in shock-loaded niobium[J]. Materials Science and Engineering: A, 103, 241-255(1988).

    [7] Lu C H, Hahn E, Remington B. Phase transformation in tantalum under extreme laser deformation[J]. Scientific Reports, 5, 15064(2015).

    [8] Johnson Q, Mitchell A, Keeler RN. X-ray diffraction during shock-wave compression[J]. Physical Review Letters, 25, 1099-1101(1970).

    [9] Jensen B, Gupta Y. X-ray diffraction measurements in shock compressed magnesium doped LiF crystals[J]. Journal of Applied Physics, 100, 053512(2006).

    [10] Jensen B, Gupta Y. Time-resolved X-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF[J]. Journal of Applied Physics, 104, 013510(2008).

    [11] Turneaure S J, Gupta Y. Material strength determination in the shock compressed state using X-ray diffraction measurements[J]. Journal of Applied Physics, 109, 123510(2011).

    [12] Milathianaki D, Boutet S, Williams G. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 342, 220-223(2013).

    [13] Turneaure S J, Renganathan P, Winey J. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction[J]. Physical Review Letters, 120, 265503(2018).

    [14] Wehrenberg C, McGonegle D, Bolme C. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics[J]. Nature, 550, 496-499(2017).

    [15] Sliwa M, McGonegle D, Wehrenberg C. Femtosecond X-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum[J]. Physical Review Letters, 120, 265502(2018).

    [16] Sharma S M, Turneaure S J, Winey J. Real-time observation of stacking faults in gold shock compressed to 150 GPa[J]. Physical Review X, 10, 011010(2020).

    [17] Rudd R E, Germann T C, Remington B A. Metal deformation and phase transitions at extremely high strain rates[J]. MRS Bulletin, 35, 999-1006(2011).

    [18] Wang J, Coppari F, Smith R F. X-ray diffraction of molybdenum under ramp compression to 1 TPa[J]. Physical Review B, 94, 104102(2016).

    [19] Wa rk, Justin. Time-resolved X-ray diffraction[J]. Contemporary Physics, 37, 205-218(2006).

    [20] Ping Y, Coppari F. Laser shock XAFS studies at OMEGA facility[J]. High Pressure Research, 36, 303-314(2016).

    [21] Glendinning S, Weber S, Bell P. Laser-driven planar Rayleigh-Taylor instability experiments[J]. Physical Review Letters, 69, 1201-1204(1992).

    [22] Rosenbluth M N. Hbook of Plasma Physics[M]. 1991, 3: 111

    [23] Kalantar D H, Belak J, Bringa E. High-pressure, high-strain-rate lattice response of shocked materials[J]. Physics of Plasmas, 10, 1569-1576(2003).

    [24] Kalantar D H, Belak J F, Collins G W. Direct observation of the alpha-epsilon transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Phys Rev Lett, 95, 075502(2005).

    [25] Rygg J, Smith R, Lazicki A. X-ray diffraction at the National Ignition Facility[J]. Review of Scientific Instruments, 91, 043902(2020).

    [26] Rygg J R, Eggert J H, Lazicki A E. Powder diffraction from solids in the terapascal regime[J]. Rev Sci Instrum, 83, 113904(2012).

    [27] Yaakobi B, Boehly T R, Meyerhofer D D. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Phys Rev Lett, 95, 075501(2005).

    [28] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 13, 297-319(1960).

    [29] Taylor G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London, 201, 192-196(1950).

    [30] Barnes J F, Blewett P J, McQueen R G. Taylor instability in solids[J]. Journal of Applied Physics, 45, 727-732(1974).

    [31] Park H S, Lorenz K T, Cavallo R M. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Phys Rev Lett, 104, 135504(2010).

    [32] Park H S, Remington B A, Becker R C. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures[J]. Physics of Plasmas, 17, 056314(2010).

    [33] Schneider M, Kad B, Meyers M. Laser-induced shock compression of copper: Orientation and pressure decay effects[J]. Metallurgical and Materials Transactions A, 35, 2633-2646(2004).

    [34] Schneider M S, Kad B, Kalantar D H. Laser shock compression of copper and copper-aluminum alloys[J]. International Journal of Impact Engineering, 32, 473-507(2005).

    [35] Foster J M, Comley A J, Case G S. X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10–70 GPa[J]. Journal of Applied Physics, 122, 025117(2017).

    [36] Suggit M, Kimminau G, Hawreliak J. Nanosecond X-ray Laue diffraction apparatus suitable for laser shock compression experiments[J]. Rev Sci Instrum, 81, 083902(2010).

    [37] Suggit M J, Higginbotham A, Hawreliak J A. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper[J]. Nature Communications, 3, 1224-1229(2012).

    [38] Stubley P G, Higginbotham A, Wark J S. Inelastic response of silicon to shock compression[J]. Computational Materials Science, 6, 121-126(2016).

    [39] Wehrenberg C, Comley A, Barton N. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction[J]. Physical Review B, 92, 104305(2015).

    [40] Murphy WJ, Higginbotham A, Kimminau G. The strength of single crystal copper under uniaxial shock compression at 100 GPa[J]. Journal of Physics: Condensed Matter, 22, 065404(2010).

    [41] Comley A J, Maddox B R, Rudd R E. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction[J]. Phys Rev Lett, 110, 115501(2013).

    [42] Hawreliak J A, El-Dasher B, Lorenzana H. In situ X-ray diffraction measurements of the c/a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron[J]. Physical Review B, 83, 144114(2011).

    [43] Remington B A, Park H S, Casey D T. Rayleigh-Taylor instabilities in high-energy density settings on the National Ignition Facility[J]. Proceedings of the National Academy of Sciences, 116, 18233-18238(2019).

    [44] Lorenz K T, Edwards M J, Glendinning S G. Accessing ultrahigh-pressure, quasi-isentropic states of matter[J]. Physics of Plasmas, 12, 056309(2005).

    [45] Stebner A P, Wehrenberg C E, Li B. Strength of tantalum shocked at ultrahigh pressures[J]. Materials Science and Engineering: A, 732, 220-227(2018).

    [46] Krygier A, Powell P, McNaney J. Extreme hardening of Pb at high pressure and strain rate[J]. Physical Review Letters, 123, 205701(2019).

    [47] Steinberg D, Cochran S, Guinan M. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 51, 1498-1504(1980).

    [48] Steinberg D, Lund C. A constitutive model for strain rates from 10−4 to 106 s−1[J]. Journal of Applied Physics, 65, 1528-1533(1989).

    [49] Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for extreme loading conditions[J]. Journal of Applied Physics, 93, 211-220(2003).

    [50] Barton N, Bernier J, Becker R. A multiscale strength model for extreme loading conditions[J]. Journal of Applied Physics, 109, 073501(2011).

    [51] Becker R, Arsenlis A, Marian J, et al. Continuum level fmulation implementation of a multiscale model f vanadium[R]. LLNLTR416095, 2009.

    [52] Gleason A E. Soft metal gains Hulk-like strength[J]. Physics, 12, 125(2019).

    Qiannan Wang, Jianbo Hu. Recent progress in micro-mesoscopic study of dynamics of plastic deformation based on large-scale laser facilities[J]. High Power Laser and Particle Beams, 2020, 32(11): 112010
    Download Citation