• Photonics Research
  • Vol. 12, Issue 6, 1283 (2024)
Rui Ma1, Zijun Huang1, Shengqian Gao1, Jingyi Wang1..., Xichen Wang2, Xian Zhang1, Peng Hao2,4,*, X. Steve Yao2,3,5,* and Xinlun Cai1,6,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing, College of Physics Science and Technology, Hebei University, Baoding 071002, China
  • 3NuVison Photonics, Inc., Las Vegas, Nevada 89109, USA
  • 4e-mail: haopeng@hbu.edu.cn
  • 5e-mail: syao@ieee.org
  • 6e-mail: caixlun5@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.521301 Cite this Article Set citation alerts
    Rui Ma, Zijun Huang, Shengqian Gao, Jingyi Wang, Xichen Wang, Xian Zhang, Peng Hao, X. Steve Yao, Xinlun Cai, "Ka-band thin film lithium niobate photonic integrated optoelectronic oscillator," Photonics Res. 12, 1283 (2024) Copy Citation Text show less
    References

    [1] P. Ghelfi, F. Laghezza, F. Scotti. A fully photonics-based coherent radar system. Nature, 507, 341-345(2014).

    [2] M. Agiwal, A. Roy, N. Saxena. Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tuts., 18, 1617-1655(2016).

    [3] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [4] X. S. Yao, L. Maleki, D. Eliyahu. Progress in the opto-electronic oscillator:a ten year anniversary review. IEEE MTT-S International Microwave Symposium Digest, 287-290(2004).

    [5] A. Hajimiri, T. H. Lee. A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits, 33, 179-194(1998).

    [6] M. E. Tobar, E. N. Ivanov, R. A. Woode. Low noise microwave oscillators based on high-Q temperature stabilized sapphire resonators. Proceedings of IEEE 48th Annual Symposium on Frequency Control, 433-440(1994).

    [7] X. S. Yao, L. Maleki. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B, 13, 1725-1735(1996).

    [8] G. K. M. Hasanuzzaman, S. Iezekiel, A. Kanno. W-band optoelectronic oscillator. IEEE Photonics Technol. Lett., 32, 771-774(2020).

    [9] Y. Li, A. Rolland, K. Iwamoto. Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity. Opt. Lett., 44, 359-362(2019).

    [10] K. Saleh, R. Henriet, S. Diallo. Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators. Opt. Express, 22, 32158-32173(2014).

    [11] S. Ten. Ultra low-loss optical fiber technology. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2016).

    [12] X. S. Yao, L. Maleki. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron., 36, 79-84(2000).

    [13] E. Salik, N. Yu, L. Maleki. An ultralow phase noise coupled optoelectronic oscillator. IEEE Photonics Technol. Lett., 19, 444-446(2007).

    [14] D. K. Armani, T. J. Kippenberg, S. M. Spillane. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [15] K. Volyanskiy, P. Salzenstein, H. Tavernier. Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation. Opt. Express, 18, 22358-22363(2010).

    [16] A. B. Matsko, L. Maleki, A. A. Savchenkov. Whispering gallery mode based optoelectronic microwave oscillator. J. Mod. Opt., 50, 2523-2542(2003).

    [17] X. Zou, X. Liu, W. Li. Optoelectronic oscillators (OEOs) to sensing, measurement, and detection. IEEE J. Quantum Electron., 52, 0601116(2015).

    [18] J. Zhang, J. Yao. Parity-time–symmetric optoelectronic oscillator. Sci. Adv., 4, 6782(2018).

    [19] J. Zhang, L. Li, G. Wang. Parity-time symmetry in wavelength space within a single spatial resonator. Nat. Commun., 11, 3217(2020).

    [20] L. Wang, T. Hao, G. Li. Microwave photonic temperature sensing based on Fourier domain mode-locked OEO and temperature-to-time mapping. J. Lightwave. Technol., 40, 5322-5327(2022).

    [21] D. Eliyahu, D. Seidel, L. Maleki. Phase noise of a high performance OEO and an ultralow noise floor cross-correlation microwave photonic homodyne system. IEEE International Frequency Control Symposium, 811-814(2008).

    [22] L. Maleki. The optoelectronic oscillator. Nat. Photonics, 5, 728-730(2011).

    [23] T. Hao, Y. Liu, J. Tang. Recent advances in optoelectronic oscillators. Adv. Photonics, 2, 044001(2020).

    [24] D. Zhu, S. Pan, D. Ben. Tunable frequency-quadrupling dual-loop optoelectronic oscillator. IEEE Photonics Technol. Lett., 24, 194-196(2011).

    [25] P. Zhou, F. Zhang, D. Zhang. Performance enhancement of an optically-injected-semiconductor-laser-based optoelectronic oscillator by subharmonic microwave modulation. Opt. Lett., 43, 5439-5544(2018).

    [26] W. Li, J. Yao. An optically tunable optoelectronic oscillator. J. Lightwave Technol., 28, 2640-2645(2010).

    [27] W. Li, J. Yao. Optically tunable frequency-multiplying optoelectronic oscillator. IEEE Photonics Technol. Lett., 24, 812-814(2012).

    [28] T. Hao, Q. Cen, Y. Dai. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun., 9, 1839(2018).

    [29] Z. Ge, T. Hao, J. Capmany. Broadband random optoelectronic oscillator. Nat. Commun., 11, 5724(2020).

    [30] T. Hao, Q. Cen, S. Guan. Optoelectronic parametric oscillator. Light Sci. Appl., 9, 102(2020).

    [31] T. Hao, H. Ding, W. Li. Dissipative microwave photonic solitons in spontaneous frequency-hopping optoelectronic oscillators. Photonics Res., 10, 1280-1289(2022).

    [32] M. Merklein, B. Stiller, IV. Kabakova. A widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett., 41, 4633-4636(2016).

    [33] T. Hao, J. Tang, D. Domenech. Toward monolithic integration of OEOs: from systems to chips. J. Lightwave Technol., 36, 4565-4582(2018).

    [34] Z. Xuan, L. Du, F. Aflatouni. Frequency locking of semiconductor lasers to RF oscillators using hybrid-integrated opto-electronic oscillators with dispersive delay lines. Opt. Express, 27, 10729-10737(2019).

    [35] J. Tang, T. Hao, W. Li. Integrated optoelectronic oscillator. Opt. Express, 26, 12257-12265(2018).

    [36] W. Zhang, J. Yao. A silicon photonic integrated frequency-tunable optoelectronic oscillator. International Topical Meeting on Microwave Photonics, 1-4(2017).

    [37] W. Zhang, J. Yao. Silicon photonic integrated optoelectronic oscillator for frequency tunable microwave generation. J. Lightwave. Technol., 36, 4655-4663(2018).

    [38] G. Zhang, T. Hao, Q. Cen. Hybrid-integrated wideband tunable optoelectronic oscillator. Opt. Express, 31, 16929-16938(2023).

    [39] L. Wang, X. Xiao, L. Xu. On-chip tunable parity-time symmetric optoelectronic oscillator. Adv. Photonics Nexus, 2, 016004(2023).

    [40] C. Wang, M. Zhang, B. Stern. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [41] M. He, M. Xu, Y. Ren. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [42] M. Xu, M. He, H. Zhang. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [43] X. Zhang, X. Liu, R. Ma. Heterogeneously integrated III–V-on-lithium niobate broadband light sources and photodetectors. Opt. Lett., 47, 4564-4567(2022).

    [44] X. Zhang, X. Liu, L. Liu. Heterogeneous integration of III–V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl. Phys. Lett., 122, 081103(2023).

    [45] Y. Han, X. Zhang, R. Ma. Widely tunable O-band lithium niobite/III-V transmitter. Opt. Express, 30, 35478-35485(2022).

    [46] Y. Han, X. Zhang, F. Huang. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser. Opt. Lett., 46, 5413-5416(2021).

    [47] P. T. Do, C. Alonso-Ramos, X. Le Roux. Silicon photonic spiral shape resonator applied to the optoelectronic oscillator. IET Optoelectron., 13, 303-307(2019).

    [48] X. S. Yao. Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification. IEEE Photonics Technol. Lett., 10, 264-266(1998).

    [49] W. Zhang, J. Yao. A silicon photonic integrated frequency-tunable microwave photonic bandpass filter. International Topical Meeting on Microwave Photonics, 1-4(2017).

    [50] M. Xu, Y. Zhu, J. Tang. Attojoule/bit folded thin film lithium niobate coherent modulators using air-bridge structures. APL Photonics, 8, 066104(2023).

    [51] Y. Chembo, L. Larger, H. Tavernier. Dynamic instabilities of microwaves generated with optoelectronic oscillators. Opt. Lett., 32, 2571-2573(2007).

    [52] X. Liu, M. He, Y. Pan. High quality factor hybrid silicon and lithium niobate micro-ring resonators. Asia Communications and Photonics Conference (ACP), 1-3(2019).

    [53] X. Ma, X. S. Yao. Single-frequency lasers’ linewidths elegantly characterized with Sigmoid functions of observation time. J. Lightwave. Technol.(2024).

    [54] W. Jin, Q. F. Yang, L. Chang. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [55] Y. Yu, H. Tang, W. Liu. Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator. IEEE J. Sel. Top. Quantum Electron., 26, 8301009(2020).

    [56] K. Saleh, P. H. Merrer, O. Llopis. Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic oscillator phase noise. Opt. Lett., 37, 518-520(2020).

    Rui Ma, Zijun Huang, Shengqian Gao, Jingyi Wang, Xichen Wang, Xian Zhang, Peng Hao, X. Steve Yao, Xinlun Cai, "Ka-band thin film lithium niobate photonic integrated optoelectronic oscillator," Photonics Res. 12, 1283 (2024)
    Download Citation