[1] Liu D S, Jiang P, Wang Y X, Lu Y Z, Wu J Y, Xu X, Ji Z Y,Sun C F, Wang X L and Liu W M 2023 Engineering tridimensional hydrogel tissue and organ phantoms with tunable springiness Adv. Funct. Mater. 33 2214885
[2] Liang Y P, He J H and Guo B L 2021 Functional hydrogels as wound dressing to enhance wound healing ACS Nano15 12687–722
[3] Zhang C Y, Wang J K, Li S, Zou X Q, Yin H X, Huang Y C,Dong F L, Li P Y and Song Y T 2023 Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance Eur. Polym. J. 186 111827
[4] Li Q L, Chen J W, Zhang Y X, Chi C Y, Dong G F, Lin J R and Chen Q H 2021 Superelastic, antifreezing, antidrying, and conductive organohydrogels for wearable strain sensors ACS Appl. Mater. Interfaces 13 51546–55
[5] Guo J H, Yu Y R, Zhang D G, Zhang H and Zhao Y J 2021 Morphological hydrogel microfibers with MXene encapsulation for electronic skin Research 2021 7065907
[6] Lee Y, Song W J and Sun J Y 2020 Hydrogel soft robotics Mater. Today Phys. 15 100258
[7] Cui C, Gao H L, Wang Z Y, Wen S M, Wang L J, Fan X W,Gong X L and Yu S H 2023 Controlled desiccation of preprinted hydrogel scaffolds toward complex 3D microarchitectures Adv. Mater. 35 2207388
[8] Yang H, Ji M K, Yang M, Shi M X Z, Pan Y D, Zhou Y F,Qi H J, Suo Z G and Tang J D 2021 Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance Matter 4 1935–46
[9] Wu J Y, Zhang Z X, Wu Z Y, Liu D S, Yang X X, Wang Y X,Jia X, Xu X, Jiang P and Wang X L 2023 Strong and ultra-tough supramolecular hydrogel enabled by strain-induced microphase separation Adv. Funct. Mater.33 2210395
[10] Wu J Y et al 2022 Biomechanically compatible hydrogel bioprosthetic valves Chem. Mater. 34 6129–41
[11] Mo X W, Ouyang L L, Xiong Z and Zhang T 2022 Advances in digital light processing of hydrogels Biomed. Mater.17 042002
[12] Zhan Z H, Chen L, Duan H G, Chen Y Q, He M and Wang Z L 2022 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots Int. J. Extrem. Manuf.4 015302
[13] Chen L, Duan G H, Zhang C, Cheng P and Wang Z L 2022 3D printed hydrogel for soft thermo-responsive smart window Int. J. Extrem. Manuf. 4 025302
[14] Dong M, Han Y, Hao X P, Yu H C, Yin J, Du M, Zheng Q and Wu Z L 2022 Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements Adv. Mater. 34 2204333
[15] Anandakrishnan N et al 2021 Fast stereolithography printing of large-scale biocompatible hydrogel models Adv. Healthc.Mater. 10 2002103
[16] Xie M B et al 2023 Volumetric additive manufacturing of pristine silk-based (bio)inks Nat. Commun. 14 210
[17] Li X L, Lou D Y, Wang H Y, Sun X Y, Li J and Liu Y N 2020 Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property Adv. Funct. Mater. 30 2007291
[18] Yang J et al 2022 Tough adhesive, antifreezing, and antidrying natural globulin-based organohydrogels for strain sensors ACS Appl. Mater. Interfaces 14 39299–310
[19] Nguyen K, Kc S, Gonzalez T, Tapia H and Boothby T C 2022 Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance Commun.Biol. 5 1046
[20] Murray B S and Liang H J 2000 Evidence for conformational stabilization of β-lactoglobulin when dried with trehalose Langmuir 16 6061–3
[21] Del Pilar Bremauntz M, Torres-Bustillos L G,Ca?nizares-Villanueva R O, Duran-Paramo E and Fernández-Linares L 2011 Trehalose and sucrose osmolytes accumulated by algae as potential raw material for bioethanol Nat. Resour. 2 173–9
[22] J?nsson K I and Persson O 2010 Trehalose in three species of desiccation tolerant tardigrades Open Zool. J. 3 1–5
[23] Aranda J S, Cabrera A I and Chairez J I 2008 Predicting trehalose cytoplasmic content during a saccharomyces cerevisiae biomass production process Rev. Mex. Ing. Quim.7 71–78
[24] Richards A B, Krakowka S, Dexter L B, Schmid H,Wolterbeek A P M, Waalkens-Berendsen D H, Shigoyuki A and Kurimoto M 2002 Trehalose: a review of properties,history of use and human tolerance, and results of multiple safety studies Food Chem. Toxicol. 40 871–98
[25] Green J L and Angell C A 1989 Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly J. Phys. Chem. 93 2880–2
[26] Lins R D, Pereira C S and Hünenberger P H 2004 Trehalose-protein interaction in aqueous solution Proteins 55 177–86
[27] Elbein A D 2004 Trehalose metabolism Encycl Biol. Chem.4 251–5
[28] Akao K I, Okubo Y, Asakawa N, Inoue Y and Sakurai M 2001Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer Carbohydrate Res. 334 233–41
[29] Burek M, Wa′skiewicz S, Awietjan S and Wandzik I 2017 Thermoresponsive hydrogels with covalently incorporated trehalose as protein carriers React. Funct. Polym.119 105–15
[30] Ash C 2017 Trehalose confers superpowers Science 358 1398–9
[31] Elbein A D, Pan Y T, Pastuszak I and Carroll D 2003 New insights on trehalose: a multifunctional molecule Glycobiology 13 17R–27R
[32] Han Z L, Wang P, Lu Y C, Jia Z, Qu S X and Yang W 2022 A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction Sci. Adv.8 eabl5066
[33] Kim J R, Woo S H, Son Y L, Kim J R, Kasi R M and Kim S C 2021 Ultra-tough and super-swelling poly(vinyl alcohol)/poly(AAm-co-AA sodium salts) double network hydrogels Macromolecules 54 2439–48
[34] Sun H, Yu P, Peng X, Meng L Z, Qin M, Xu X Y and Li J S 2022 Inspired by the periodontium: a universal bacteria-defensive hydrogel for preventing percutaneous device-related infection ACS Appl. Mater. Interfaces14 50424–33
[35] Migliardo F, Bourdreux Y, Buchotte M, Doisneau G, Beau J M and Bayan N 2019 Study of the conformational behaviour of trehalose mycolates by FT-IR spectroscopy Chem. Phys.Lipids 223 104789
[36] Han I K et al 2023 Electroconductive, adhesive, non-swelling,and viscoelastic hydrogels for bioelectronics Adv. Mater.35 2203431
[37] Shin M, Shin S H, Lee M, Kim H J, Jeong J H, Choi Y H,Oh D X, Park J, Jeon H and Eom Y 2021 Rheological criteria for distinguishing self-healing and non-self-healing hydrogels Polymer 229 123969
[38] Tan C S Y, Liu J, Groombridge A S, Barrow S J, Dreiss C A and Scherman O A 2018 Controlling spatiotemporal mechanics of supramolecular hydrogel networks with highly branched cucurbit[8]uril polyrotaxanes Adv. Funct.Mater. 28 1702994
[39] Ma Y et al 2022 Biomacromolecule-based agent for high-precision light-based 3D hydrogel bioprinting Cell Rep. Phys. Sci. 3 100985
[40] Diaz-Dussan D, Peng Y Y, Sengupta J, Zabludowski R,Adam M K, Acker J P, Ben R N, Kumar P and Narain R 2020 Trehalose-based polyethers for cryopreservation and three-dimensional cell scaffolds Biomacromolecules 21 1264–73
[41] Warner D T 1962 Some possible relationships of carbohydrates and other biological components with the water structure at 37? Nature 196 1055–8
[42] Jiang P, Ji Z Y, Liu D S, Ma S H, Wang X L and Zhou F 2022 Growing hydrogel organ mannequins with interconnected cavity structures Adv. Funct. Mater. 32 2108845