• Acta Photonica Sinica
  • Vol. 49, Issue 11, 154 (2020)
Xiao-ming ZHU1、2 and Jin-ping HE1、2、*
Author Affiliations
  • 1National Astronomical Observatories / Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing20042, China
  • 2CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing1004, China
  • show less
    DOI: 10.3788/gzxb20204911.1149011 Cite this Article
    Xiao-ming ZHU, Jin-ping HE. A 10-million-resolution VIPA Spectrograph Calibrated Simultaneously with a Laser Frequency Comb: The Design and Applications (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 154 Copy Citation Text show less
    References

    [1] D J JONES, S A DIDDAMS, J K RANKA. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [2] C H LI, A J BENEDICK, P FENDEL. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1. Nature, 452, 610-612(2008).

    [3] F PEPE, M MAYOR, B DELABRE. HARPS: a new high-resolution spectrograph for the search of extrasolar planets, 4008, 582-592(2000).

    [4] M J BARLOW, I A CRAWFORD, F DIEGO. First results from the UHRF: ultra-high-resolution observations of atomic interstellar lines towards ζ Ophiuchi. Monthly Notices of the Royal Astronomical Society, 272, 333-345(1995).

    [5] M SHIRASAKI. PD3(1995).

    [6] M SHIRASAKI. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Optics Letters, 21, 366-368(1996).

    [7] S XIAO, A M WEINER. 2-D wavelength demultiplexer with potential for ≥1000 channels in the C-band. Optical Express, 12, 2895-2902(2004).

    [8] S XIAO, A M WEINER. LIN C, Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-arrays (VIPA). Journal of Lightwave Technology, 23, 1456-1467(2005).

    [9] H LUO, Y LIU. Progress and application of the virtually imaged phased array(2006).

    [10] S A DIDDAMS, L HOLLBERG, V MBELE. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 627-630(445).

    [11] L NUGENT-GLANDORF, T NEELY, F ADLER. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Optics Letters, 37, 3285-3287(2012).

    [12] A KLOSE, G YCAS, F CRUZ. Rapid, broadband spectroscopic temperature measurement of CO2 using VIPA spectroscopy. Applied Physics B, 122, 78(2016).

    [13] S K SCHOLTEN, J D ANSTIE, N B HEBERT. Complex direct comb spectroscopy with a virtually imaged phased array. Optics Letters, 41, 1277-1280(2016).

    [14] G BOURDAROT, E LE COARER, D MOUILLET. Experimental test of a 40 cm-long R= 100 000 spectrometer for exoplanet characterisation, 10702, 107025Y(2018).

    [15] G BOURDAROT, E LE COARER, X BONFILS. Nanovipa: a miniaturized high-resolution echelle spectrometer, for the monitoring of young stars from a 6u cubesat. CEAS Space Journal, 9, 411-419(2017).

    [16] X M ZHU, D LIN, Z B HAO. A VIPA spectrograph with ultra-high resolution and wavelength calibration for astronomical applications. The Astronomical Journal, 160, 135(2020).

    [17] I A G SNELLEN, KOK R J DE, R LE POOLE. Finding extraterrestrial life using ground-based high-dispersion spectroscopy. The Astrophysical Journal, 764, 182(2013).

    [18] M LÓPEZ-MORALES, T CURRIE, J TESKE. Detecting earth-like biosignatures on rocky exoplanets around nearby stars with ground-based extremely large telescopes. arXiv preprint arXiv:, 2019(9523).

    [19] G SCARCELLI, S H YUN. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nature Photonics, 2, 39-43(2008).

    [20] Z MENG, A J TRAVERSO, C W BALLMANN. Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Advances in Optics and Photonics, 8, 300-327(2016).

    [21] K SCHORSTEIN, A POPESCU, M GÖBEL. Remote water temperature measurements based on Brillouin scattering with a frequency doubled pulsed Yb: doped fiber amplifier. Sensors, 8, 5820-5831(2008).

    [22] K SCHORSTEIN, T WALTHER. Depth-resolved temperature measurements of water using the Brillouin lidar technique. Applied Physics B, 97, 931-934(2009).

    [23] C H LI, A J BENEDICK, P FENDEL. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1. Nature, 452, 610-612(2008).

    [24] Z LIU, J F BARLOW, P W CHAN. A review of progress and applications of pulsed doppler wind LiDARs. Remote Sensing, 11, 2522(2019).

    [25] DEN BERG S AVAN, S T PERSIJN. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Physical Review Letters, 108, 183901(2012).

    [26] DEN BERG S AVAN, ELDIK SVAN, N BHATTACHARYA. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Scientific Reports, 5, 1-10(2015).

    [27] Y C HUANG, Y C GUAN, T H SUEN. Absolute frequency measurement of molecular iodine hyperfine transitions at 647 nm. Applied Optics, 57, 2102-2106(2018).

    [28] S XIAO, A M WEINER, C LIN. A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory. IEEE Journal of Quantum Electronics, 40, 420-426(2004).

    [29] J W BRAULT. High precision Fourier transform spectrometry: the critical role of phase corrections. Microchimica Acta, 93, 215-227(1987).

    [30] P M CHAIKIN, T C LUBENSKY. Principles of condensed matter physics(2000).

    [31] P BENASSI, R ERAMO, A GIUGNI. A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet. Review of Scientific Instruments, 76, 013904(2005).

    [32] T MATSUOKA, K SAKAI, K TAKAGI. Hyper‐resolution Brillouin–Rayleigh spectroscopy with an optical beating technique. Review of Scientific Instruments, 64, 2136-2139(1993).

    [33] J R SANDERCOCK. Some recent developments in Brillouin scattering. RCA Review, 36, 89-107(1975).

    [34] T SHIODA, T MORISAKI. Single-shot tomography by means of VIPA and spatial phase modulator installed optical interferometer. Optics Communications, 284, 144-147(2011).

    [35] G SCARCELLI, S H YUN. In vivo Brillouin optical microscopy of the human eye. Optics Express, 20, 9197-9202(2012).

    [36] G SCARCELLI, S H YUN. Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy. Optics Express, 19, 10913-10922(2011).

    [37] Z MENG, V V YAKOVLEV. Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) camera. Applied Spectroscopy, 70, 1356-1363(2016).

    [38] K SCHORSTEIN, A POPESCU, G SCHEICH. Towards a Brillouin-LIDAR for remote sensing of the temperature profile in the ocean, 1-6(2006).

    [39] A RUDOLF, T WALTHER. Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean. Optical Engineering, 53, 051407(2014).

    [40] Y EMERY, X QUAN. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. Applied Optics, 36, 6887-6894(1997).

    [41] M MAYOR, D QUELOZ. A Jupiter-mass companion to a solar-type star. Nature, 378, 355-359(1995).

    [42] A P HATZES, W D COCHRAN. Spectrograph requirements for precise radial velocity measurement. Garching, 275-278(1992).

    [43] H WATANABE, G VISSERS, R KITAI. Ellerman bombs at high resolution. I. Morphological evidence for photospheric reconnection. The Astrophysical Journal, 736, 71(2011).

    [44] H WANG, R LIU, Q LI. Extending counter-streaming motion from an active region filament to a sunspot light bridge. The Astrophysical Journal Letters, 852(2018).

    [45] X ZHU, J HE. Numerical study of comb-based high-accuracy distance measurement utilizing VIPA interferometry. Journal of Optics, 21, 025703(2019).

    [46] B XU, H YASUI, Y NAKAJIMA, Y MA, Z ZHANG, K MINOSHIMA. Fully stabilized 750-MHz Yb: fiber frequency comb. Optics Express, 25, 11910-11918(2017).

    Xiao-ming ZHU, Jin-ping HE. A 10-million-resolution VIPA Spectrograph Calibrated Simultaneously with a Laser Frequency Comb: The Design and Applications (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 154
    Download Citation