• Frontiers of Optoelectronics
  • Vol. 15, Issue 1, 12200 (2022)
Xianfeng Qiao1、2、*, Shu Xiao1, Peisen Yuan1, Dezhi Yang1, and Dongge Ma1
Author Affiliations
  • 1Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-022-00021-8 Cite this Article
    Xianfeng Qiao, Shu Xiao, Peisen Yuan, Dezhi Yang, Dongge Ma. Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200 Copy Citation Text show less
    References

    [1] Bassler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solid (b) 175, 15–55 (1993)

    [2] Liu, J., Zhang, H., Dong, H., Meng, L., Jiang, L., Jiang, L., Wang, Y., Yu, J., Sun, Y., Hu, W., Heeger, A.J.: High mobility emissive organic semiconductor. Nat. Commun. 6(1), 10032 (2015)

    [3] O’Neill, M., Kelly, S.M.: Ordered materials for organic electronics and photonics. Adv. Mater. 23(5), 566–584 (2011)

    [4] Matsushima, T., Bencheikh, F., Komino, T., Leyden, M.R., Sandanayaka, A.S.D., Qin, C., Adachi, C.: High performance from extraordinarily thick organic light-emitting diodes. Nature 572(7770), 502–506 (2019)

    [5] Xu, K., Hu, S., Hu, J., Wang, X.: Numerical simulation of mobility effects on transient electroluminescence spikes in organic lightemitting diodes. J. Electron. Mater. 48(2), 838–844 (2019)

    [6] Mott, N.F., Gurney, R.W.: Electronic Processes in Ionic Crystals, pp. 169–170. Oxford University Press, London (1964)

    [7] Murgatroyd, P.N.: Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D Appl. Phys. 3(2), 151–156 (1970)

    [8] Rose, A.: Space-charge-limited currents in solid. Phys. Rev. 97(6), 1538–1544 (1955)

    [9] Lampert, M.A.: Simplified theory of space-charge-limited currents in an insulator with taps. Phys. Rev. 103, 1648–1656 (1956)

    [10] Gill, W.D.: Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J. Appl. Phys. 43(12), 5033–5040 (1972)

    [11] Blom, P.W.M., Vissenberg, M.C.J.M.: Dispersive hole transport in poly(p-phenylene vinylene). Phys. Rev. Lett. 80(17), 3819–3822 (1998)

    [12] Hosokawa, C., Tokailin, H., Higashi, H., Kusumoto, T.: Transient behavior of organic thin film electroluminescence. Appl. Phys. Lett. 60, 1220–1992 (1992)

    [13] Braun, D., Moses, D., Zhang, C., Heeger, A.J.: Nanoseconed transient electroluminescence from polymer light-emitting diodes. Appl. Phys. Lett. 61(26), 3092–3094 (1992)

    [14] Poplavskyy, D., Nelson, J.: Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J. Appl. Phys. 93(1), 341–346 (2003)

    [15] Knox, S., Jones, H., Esward, T.: Device history dependent effects in dark injection transient current measurements of charge mobility in organic light emitting diodes. Proc. SPIE Int. Soc. Opt. Eng. 7722, 772218 (2010)

    [16] Lelidis, I., Barbero, G.: Effect of different anionic and cationic mobilities on the impedance spectroscopy measurements. Phys. Lett. A 343, 440–445 (2005)

    [17] Murphy, N.S.J., Berz, F., Flinn, I.: Carrier mobility in silicon MOST’s. Solid-State Electron. 12(10), 775–786 (1969)

    [18] Lee, H.: Investigation of charge-transport properties in polymer/fullerene blends using transient electroluminescence technique. Jpn. J. Appl. Phys. 59(8), 081004 (2020)

    [19] Nabha-Barnea, S., Gotleyb, D., Yonish, A., Shikler, R.: Relating transient electroluminescence lifetime and bulk transit time in OLED during switch-off. J. Mater. Chem. C, Mater. Opt. Electron. Devices 9(2), 719–726 (2021)

    [20] Shen, Q., Hao, Y., Ma, L., Wang, X.: Comparative study of red/green/blue quantum-dot light-emitting diodes by time-resolved transient electroluminescence. J. Phys. Chem. Lett. 12(29), 7019–7025 (2021)

    [21] Xu, M., Peng, Q., Zou, W., Gu, L., Xu, L., Cheng, L., He, Y., Yang, M., Wang, N., Huang, W., Wang, J.: A transient-electroluminescence study on perovskite light-emitting diodes. Appl. Phys. Lett. 115(4), 041102 (2019)

    [22] Amin, N.R.A., Kesavan, K.K., Biring, S., Lee, C.C., Yeh, T.H., Ko, T.Y., Liu, S.W., Wong, K.T.: A comparative study via photophysical and electrical characterizations on interfacial and bulk exciplex-forming systems for efficient organic lightemitting diodes. ACS Appl. Electron. Mater. 2(4), 1011–1019 (2020)

    [23] Chen, Y., Sun, Q., Dai, Y., Yang, D., Qiao, X., Ma, D.: EL properties and exciton dynamics of high-performance dopingfree hybrid WOLEDs based on 4P-NPD/Bepp2 heterojunction as blue emitter. Adv. Opt. Mater. 7(20), 1900703 (2019)

    [24] Lin, C., Han, P., Xiao, S., Qu, F., Yao, J., Qiao, X., Yang, D., Dai, Y., Sun, Q., Hu, D., Qin, A., Ma, Y., Tang, B., Ma, D.: Efficiency breakthrough of fluorescence OLEDs by the strategic management of “hot excitons” at highly-lying excitation triplet energy levels. Adv. Funct. Mater. 31, 2106912 (2021)

    [25] Xiao, S., Qiao, X., Lin, C., Chen, L., Guo, R., Lu, P., Wang, L., Ma, D.: In-situ quantifying the physical parameters determining the efficiency of OLEDs relying on triplet-triplet annihilation up-conversion. Adv. Opt. Mater. 10(6), 2102333 (2022)

    [26] Beker, W., The, B.H.: TCSPC Handbook, 7th edn., pp. 83–84. Becker&Hickl Gmbh, Berlin (2017)

    [27] Tang, C.W., Vanslyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987)

    [28] Kang, J., Son, J.B., Kim, G.W., Bae, S., Min, K.S., Sul, S., Jeon, W.S., Jang, J., Park, G.S., Shin, J.K., Kwon, J.H., Kim, S.K.: Time-resolved electroluminescence study for the effect of charge traps on the luminescence properties of organic lightemitting diodes. Phys. Status Solidi A-Appl. Mater. 217(17), 2000081 (2020)

    [29] Bae, H.W., Kim, G.W., Lampande, R., Park, J.H., Ko, I.J., Yu, H.J., Lee, C.Y., Kwon, J.H.: Efficiency enhancement in fluorescent deep-blue OLEDs by boosting singlet exciton generation through triplet fusion and charge recombination rate. Org. Electron. 70, 1–6 (2019)

    [30] Yao, J., Ying, S., Sun, Q., Dai, Y., Qiao, X., Yang, D., Chen, J., Ma, D.: High efficiency blue/green/yellow/red fluorescent organic light-emitting diodes sensitized by phosphors: general design rules and electroluminescence performance analysis. J. Mater. Chem. C, Mater. Opt. Electron. Devices 7(36), 11293–11302 (2019)

    [31] Murgatroyd, P.: Theory of space-charge limited current enhanced by Frenkel effect. J. Phys. D Appl. Phys. 3(2), 151–156 (1970)

    [32] Dunlap, D.H., Parris, P.E., Kenkre, V.M.: Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers. Phys. Rev. Lett. 77(3), 542–545 (1996)

    [33] Parris, P., Dunlap, D., Kenkre, V.: Energetic disorder, spatial correlations, and the high-field mobility of injected charge carriers in organic solids. Phys. Status Solidi (b) 218, 47–53 (2000)

    Xianfeng Qiao, Shu Xiao, Peisen Yuan, Dezhi Yang, Dongge Ma. Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200
    Download Citation