• Acta Photonica Sinica
  • Vol. 49, Issue 11, 144 (2020)
Yi-Hsun LI, Chun-Yi KUO, and Sheng-Lung HUANG
Author Affiliations
  • Graduate Institute of Photonics and Optoelectronics, Taiwan University, Taipei10617, China
  • show less
    DOI: 10.3788/gzxb20204911.1149010 Cite this Article
    Yi-Hsun LI, Chun-Yi KUO, Sheng-Lung HUANG. Transition-metal-ion Doped Tunable Crystalline Fiber Lasers (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 144 Copy Citation Text show less
    References

    [1] G A HOCKHAM. Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] R J MEARS, L REEKIE, I M JAUNCEY. Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electronics Letters, 23, 1026-1028(1987).

    [3] D HUANG, E A SWANSON, C P LIN. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [4] W DREXLER, U MORGNER, F X KRTNER. In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 24, 1221-1223(1999).

    [5] D E MCCUMBER. Theory of phonon terminated optical masers. Physical Review, 134, A299-A306(1964).

    [6] C J WU. Room-temperature broadly tunable laser crystals. Journal of Synthetic Crystals, 22, 384-390(1993).

    [7] A E SIEGMAN. Lasers(1986).

    [8] A A ANDERSON, R W EASON, L M B HICKEY. Ti:sapphire planar waveguide laser grown by pulsed laser deposition. Optics Letters, 22, 1556-1558(1997).

    [9] C A BURRUS, J STONE. Single-crystal fiber optical devices: A Nd:YAG fiber laser. Applied Physics Letters, 26, 318-320(1975).

    [10] C A BURRUS, J STONE, A G DENTAI. Room-temperature 1.3 μm CW operation of a glass-clad Nd:YAG single-crystal fiber laser end pumped with a single LED. Electronics Letters, 12, 600-602(1976).

    [11] M M FEJER, J L NIGHTINGALE, G A MAGEL. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers. Review of Scientific Instruments, 55, 1791-1796(1984).

    [12] R S FEIGELSON. Pulling optical fibers. Journal of Crystal Growth, 79, 669-680(1986).

    [13] Y HUO, G LI, Y DUAN. CThL4(1991).

    [14] Y DUAN, Y HUO, Z HUANG. Laser-diode-pumped Nd:YAP single crystal fiber laser. Chinese Optics Letters, 8, 622-624(1991).

    [15] S L HUANG. Crystalline fibers for fiber lasers and amplifiers. D(2019).

    [16] K Y HUANG, J C CHEN. Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission. Optics Letters, 29, 439-441(2004).

    [17] Y C HUANG, Y K LU, J C CHEN. Broadband emission from Cr-doped fibers fabricated by drawing tower. Optics Express, 14, 8492-8497(2006).

    [18] J C CHEN, Y S LIN, C N TSAI. 400-nm-bandwidth emission from a Cr-doped glass fiber. IEEE Photonics Technology Letters, 19, 595-597(2007).

    [19] K Y HUANG, D Y JHENG. Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique. Optics Express, 16, 12264-12271(2008).

    [20] S C WANG, T I YANG, D Y JHENG. Broadband and high-brightness light source: Glass-clad Ti:sapphire crystal fiber. Optics Letters, 40, 5594-5597(2015).

    [21] P MOULTON. Ti-doped sapphire: tunable solid-state laser. Optics News, 8, 9(1982).

    [22] T IZAWA, S MATSUI, M MAEDA. CtuL27(1996).

    [23] C GRIVAS, C CORBARI, G BRAMBILLA. Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses. Optics Letters, 37, 4630-4632(2012).

    [24] N B ANGERT, N I BORODIN, V M GARMASH. Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm. Soviet Journal of Quantum Electronics, 18, 73-74(1988).

    [25] H EILERS, W M DENNIS. Performance of a Cr:YAG laser. IEEE Journal of Quantum Electronics, 29, 2508-2512(1993).

    [26] I T SOROKINA, S NAUMOV, E SOROKIN. Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser. Optics Letters, 24, 1578-1580(1999).

    [27] A SENNAROGLU. Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible. Progress in Quantum Electronics, 26, 287-352(2002).

    [28] S ISHIBASHI, K NAGANUMA. JW2A(2012).

    [29] D Y JHENG, Y C LIANG. Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser. IEEE Journal of Selected Topics in Quantum Electronics, 21, 0900608(2015).

    [30] T T YANG, T I YANG, R SOUNDARARAJAN. Widely tunable, 25-mW power, Ti:sapphire crystal-fiber laser. IEEE Photonics Technology Letters, 31, 1921-1924(2019).

    [31] C C LAI, C P KE, S K LIU. Intracavity and resonant Raman crystal fiber laser. Applied Physics Letters, 100, 261101(2012).

    [32] P Y CHEN, C L CHANG, K Y HUANG. Experiment and simulation on interface shapes of an yttrium aluminium garnet miniature molten zone formed using the laser-heated pedestal growth method for single-crystal fibers. Journal of Applied Crystallography, 42, 553-563(2009).

    [33] J Y JI, P SHEN, J C CHEN. On the deposition of Cr3-δO4 spinel particles upon laser heated pedestal growth of Cr:YAG fiber. Journal of Crystal Growth, 282, 343-352(2005).

    [34] C C LAI, C P KE, S K LIU. Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser. Optics Letters, 36, 784-786(2011).

    [35] C C LAI, S C WANG. Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior. Journal of Physical Chemistry C, 116, 26052-26059(2012).

    [36] V M PARAMONOV, M I BELOVOLOV, V F KHOPIN. Bismuth-doped fibre laser continuously tunable within the range from 1.36 to 1.51 μm. Quantum Electronics, 46, 1068-1070(2016).

    Yi-Hsun LI, Chun-Yi KUO, Sheng-Lung HUANG. Transition-metal-ion Doped Tunable Crystalline Fiber Lasers (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 144
    Download Citation