• Optics and Precision Engineering
  • Vol. 22, Issue 12, 3435 (2014)
LIU Jian-lei1,2,*, SUI Qing-mei1, and ZHU Wen-xing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20142212.3435 Cite this Article
    LIU Jian-lei, SUI Qing-mei, ZHU Wen-xing. MR image segmentation based on probability density function and active contour model[J]. Optics and Precision Engineering, 2014, 22(12): 3435 Copy Citation Text show less
    References

    [1] TIAN G, XIA Y, ZHANG Y,et al.. Hybrid genetic and variational expectation-maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation [J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(3): 373-380.

    [2] SHYU K K, PHAM V T, TRAN T T, et al.. Unsupervised active contour driven by desity distance and local fiffting energy with applications to medical image segmentation [J]. Machine Vision and Applications, 2012, 23(6): 1159-1175.

    [3] WANG Y Y, YUAN Z L, TANG S. Segmentation of prostate magnetic resonance image with active shape of adaptive texture distribution [J]. Opt. Precision Eng., 2013,21(9): 2371-2380.(in Chinese)

    [4] ZHOU Y, BAI J. Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI [J]. IEEE Transactions on Biomedical Engineering, 2007,54(1): 122-129.

    [5] BAZIN P L, PHAM D L. Topology preserving tissue classification of magnetic resonance brain images [J]. IEEE Trans. Med. Imag., 2007, 26(4): 487-496.

    [6] TOHKA J, KRESTYANNILOV E, DINOV, I D, et al.. Genetic algorithms for finite mixture model based voxel classification in neuroimaging [J]. IEEE Transactions on Medical Imaging, 2007, 26(5): 696-711.

    [7] WANG X C, WEN L, WU ZH K, et al.. Finiter mixtuer model of stochastic cerebrovascular segmentation based on TOF MRA[J]. Opt. Precision Eng., 2014,22(2): 497-507. (in Chinese)

    [8] CHAN T, VESE L A. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.

    [9] HUANG A, ABUGHARBIEH R, TAM R, et al.. A hybrid geometric-statistical deformable model for automated 3-D segmentation in brain MRI [J]. IEEE Transactions on Biomedical Engineering, 2009, 56(7): 1838-1847.

    [10] CHOI H S, HAYNOR D R, KIM Y. Partial volume tissue classification of multichannel magnetic resonance images-A mixel model [J].IEEE Transactions on Medical Image,1991,10 (3): 395-407.

    [11] WU D, CAO J, WANG J H. Speaker recognition based on adapted Gaussian mixture model and static and dynamic auditory feature fusion [J]. Opt. Precision Eng., 2013,21(6): 1598-1604. (in Chinese)

    [12] JIANG H Y , FENG R J. Image segmentation method research based on improved variational level set and region growth [J]. Acta Electronica Sinica., 2012,40(8): 1659-1664. (in Chinese)

    [13] MORENO J C, SURYA P V B, PEROENCA H, et al.. Fast and globally convex multiphase active contours for brain MRI segmentation[J]. Computer Vision and Image Understanding, 2014, (125): 237-250.

    [14] KIM W, KIM C. Active contours driven by the salient edge energy model [J]. IEEE Transactions on Image Processing, 2013, 22(4): 1667-1673.

    CLP Journals

    [1] WANG Yu, WANG Bao-shan, WANG Tian, YANG Yi. Image entropy active contour models towards water area segmentation in remote sensing image[J]. Optics and Precision Engineering, 2018, 26(3): 698

    [2] Su Li, Wu Junjie, Pang Di. Panoramic Sea-Sky-Line Detection Based on Improved Active Contour Model[J]. Acta Optica Sinica, 2016, 36(11): 1115003

    LIU Jian-lei, SUI Qing-mei, ZHU Wen-xing. MR image segmentation based on probability density function and active contour model[J]. Optics and Precision Engineering, 2014, 22(12): 3435
    Download Citation