• Nano-Micro Letters
  • Vol. 15, Issue 1, 237 (2023)
Jingjing Li1, Zhexuan Liu2, Shaohua Han2, Peng Zhou3, Bingan Lu4, Jianda Zhou5, Zhiyuan Zeng6, Zhizhao Chen1、5、*, and Jiang Zhou2、**
Author Affiliations
  • 1Department of Plastic Surgery and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China
  • 2School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, People’s Republic of China
  • 3Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
  • 4School of Physics and Electronics, Hunan University, Changsha 410082, People’s Republic of China
  • 5Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, People’s Republic of China
  • 6Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01206-2 Cite this Article
    Jingjing Li, Zhexuan Liu, Shaohua Han, Peng Zhou, Bingan Lu, Jianda Zhou, Zhiyuan Zeng, Zhizhao Chen, Jiang Zhou. Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries[J]. Nano-Micro Letters, 2023, 15(1): 237 Copy Citation Text show less
    References

    [1] S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020).

    [2] Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 34, 2106409 (2022).

    [3] S. Lei, Z. Liu, C. Liu, J. Li, B. Lu et al., Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 15, 4911–4927 (2022).

    [4] C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    [5] J. Zhao, Y. Lin, J. Wu, H.Y.Y. Nyein, M. Bariya et al., A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens. 4, 1925–1933 (2019).

    [6] D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018).

    [7] C. Yang, J. Xia, C. Cui, T.P. Pollard, J. Vatamanu et al., All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6, 325–335 (2023).

    [8] A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3, 1602051 (2017).

    [9] X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    [10] X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang et al., Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16, 1902827 (2020).

    [11] X. Huang, D. Wang, Z. Yuan, W. Xie, Y. Wu et al., A fully biodegradable battery for self-powered transient implants. Small 14, 1800994 (2018).

    [12] T. Ye, J. Wang, Y. Jiao, L. Li, E. He et al., A tissue-like soft all-hydrogel battery. Adv. Mater. 34, 2105120 (2022).

    [13] J. Li, P. Ruan, X. Chen, S. Lei, B. Lu et al., Aqueous batteries for human body electronic devices. ACS Energy Lett. 8, 2904–2918 (2023).

    [14] M. Shi, R. Wang, L. Li, N. Chen, P. Xiao et al., Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 33, 2209777 (2022).

    [15] R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023).

    [16] C. Chen, H. Zhu, M. Shi, L. Hu, Z. Xue et al., Oxygen vacancies-modulated tungsten oxide anode for ultra-stable and fast aqueous aluminum-ion storage. Energy Storge Mater. 49, 370–379 (2022).

    [17] C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159 (2020).

    [18] Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, 202215324 (2023).

    [19] M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 202215552 (2023).

    [20] Y. Yang, S. Guo, Y. Pan, B. Lu, S. Liang et al., Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batteries. Energy Environ. Sci. 16, 2358–2367 (2023).

    [21] R. Xu, J. Zhou, H. Gong, L. Qiao, Y. Li et al., Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte. Biomater. Sci. 10, 1476–1485 (2022).

    [22] J. Zhou, Y. Li, L. Xie, R. Xu, R. Zhang et al., Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Mater. Today Energy 21, 100712 (2021).

    [23] H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33, 2007548 (2021).

    [24] B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineeringstrategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021).

    [25] Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022).

    [26] R. Yi, X. Shi, Y. Tang, Y. Yang, P. Zhou et al., Carboxymethyl chitosan-modified zinc anode for high-performance zinc-iodine battery with narrow operating voltage. Small Struct. (2023).

    [27] Y. Liu, X. Zhou, Y. Bai, R. Liu, X. Li et al., Engineering integrated structure for high-performance flexible zinc-ion batteries. Chem. Eng. J. 417, 127955 (2021).

    [28] Z. Tian, Z. Sun, Y. Shao, L. Gao, R. Huang et al., Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ. Sci. 14, 1602–1611 (2021).

    [29] X. Fan, J. Liu, Z. Song, X. Han, Y. Deng et al., Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 56, 454–462 (2019).

    [30] X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281 (2023).

    [31] P. Li, M. Liao, J. Li, L. Ye, X. Cheng et al., Rechargeable micro-batteries for wearable and implantable applications. Small Struct. 3, 2200058 (2022).

    [32] J. Zhou, R. Zhang, R. Xu, Y. Li, W. Tian et al., Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc-ion battery. Adv. Funct. Mater. 32, 2111406 (2022).

    [33] J.S. Chae, S.K. Park, K.C. Roh, H.S. Park, Electrode materials for biomedical patchable and implantable energy storage devices. Energy Storge Mater. 24, 113–128 (2020).

    [34] Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, 2206970 (2022).

    [35] X. Chen, X. Shi, P. Ruan, Y. Tang, Y. Sun et al., Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes. Small Sci. 3, 2300007 (2023).

    [36] P. Ruan, X. Chen, L. Qin, Y. Tang, B. Lu et al., Achieving highly proton-resistant Zn–Pb anode through low hydrogen affinity and strong bonding for long-life electrolytic Zn//MnO2 battery. Adv. Mater. 35, 2300577 (2023).

    [37] F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12, 706–715 (2019).

    [38] Q. Li, D. Wang, B. Yan, Y. Zhao, J. Fan et al., Dendrite issues for zinc anodes in a flexible cell configuration for zinc-based wearable energy-storage devices. Angew. Chem. Int. Ed. 61, 202202780 (2022).

    [39] X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou et al., Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries. Adv. Energy Mater. 12, 2102393 (2021).

    [40] T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 12, 16321–16347 (2020).

    [41] B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim et al., An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 8, 924–946 (2022).

    [42] Z. Liu, Y. Yang, B. Lu, S. Liang, H.J. Fan et al., Insights into complexing effects in acetate-based Zn–MnO2 batteries and performance enhancement by all-round strategies. Energy Storge Mater. 52, 104–110 (2022).

    Jingjing Li, Zhexuan Liu, Shaohua Han, Peng Zhou, Bingan Lu, Jianda Zhou, Zhiyuan Zeng, Zhizhao Chen, Jiang Zhou. Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries[J]. Nano-Micro Letters, 2023, 15(1): 237
    Download Citation