• Frontiers of Optoelectronics
  • Vol. 10, Issue 2, 124 (2017)
Xiangkun KONG1、2, Junyi XU1, Jin-jun MO3, and Shaobin LIU1、*
Author Affiliations
  • 1Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering,
  • 2njing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 3State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • show less
    DOI: 10.1007/s12200-017-0682-z Cite this Article
    Xiangkun KONG, Junyi XU, Jin-jun MO, Shaobin LIU. Broadband and conformal metamaterial absorber[J]. Frontiers of Optoelectronics, 2017, 10(2): 124 Copy Citation Text show less
    References

    [1] Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773-4776

    [2] Pendry J B, Holden A J, Robbins D J, StewartWJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084

    [3] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-Uspekhi, 1968, 10(4): 509-514

    [4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977-980

    [5] Bian B, Liu S, Wang S, Kong X, Guo Y, Zhao X, Ma B, Chen C. Cylindrical optimized nonmagnetic concentrator with minimized scattering. Optics Express, 2013, 21(S2): A231-A240

    [6] Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969

    [7] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534-537

    [8] Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315 (5819): 1686

    [9] churig D, Smith D R. Negative index lens aberrations. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (6): 065601

    [10] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

    [11] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T. Tripleband terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101(15): 154102

    [12] Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(20): 205104

    [13] Mao Z, Liu S, Bian B, Wang B, Ma B, Chen L, Xu J. Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures. Journal of Applied Physics, 2014, 115(20): 204505

    [14] Bian B, Liu S, Wang S, Kong X, Zhang H, Ma B, Yang H. Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber. Journal of Applied Physics, 2013, 114(19): 194511

    [15] Ye Q, Liu Y, Lin H, Li M, Yang H. Multi-band metamaterial absorber made of multi-gap SRRs structure. Applied Physics A, Materials Science & Processing, 2012, 107(1): 155-160

    [16] Liu Y, Gu S, Luo C, Zhao X. Ultra-thin broadband metamaterial absorber. Applied Physics A, Materials Science & Processing , 2012, 108(1): 19-24

    [17] Yang G, Liu X, Lv Y, Fu J, Wu Q, Gu X. Broadband polarization- insensitive absorber based on gradient structure metamaterial. Journal of Applied Physics, 2014, 115(17): 17E523

    [18] Wang B, Liu S, Bian B, Mao Z, Liu X, Ma B, Chen L. A novel ultrathin and broadband microwave metamaterial absorber. Journal of Applied Physics, 2014, 116(9): 094504

    [19] Pang Y, Cheng H, Zhou Y, Li Z, Wang J. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates. Optics Express, 2012, 20(11): 12515-12520

    [20] Sun L, Cheng H, Zhou Y, Wang J. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Optics Express, 2012, 20(4): 4675-4680

    [21] Wu C, Neuner Iii B, John J, Milder A, Zollars B, Savoy S. Largearea, wide-angle, spectrally selective plasmonic absorber. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(7): 173 - 177

    [22] Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T. Polarization insensitive metamaterial absorber with wide incident angle. Progress in Electromagnetics Research, 2010, 101: 231-239

    [23] Li L, Yang Y, Liang C. A wide-angle polarization-insensitive ultrathin metamaterial absorber with three resonant modes. Journal of Applied Physics, 2011, 110(6): 063702

    [24] Bhattacharyya S, Ghosh S, Srivastava K V. Triple band polarization- independent metamaterial absorber with bandwidth enhancement at X-band. Journal of Applied Physics, 2013, 114(9): 094514

    [25] Singh P K, Korolev K A, Afsar M N, Sonkusale S. Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Applied Physics Letters, 2011, 99(26): 264101

    [26] Yoo Y J, Zheng H Y, Kim Y J, Rhee J Y, Kang J H, Kim K W, Cheong H, Kim Y H, Lee Y P. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Applied Physics Letters, 2014, 105(4): 041902

    [27] Tao H, Strikwerda A C, Fan K, Bingham C M, Padilla W J, Zhang X, Averitt R D. Terahertz metamaterials on free-standing highlyflexible polyimide substrates. Journal of Physics D: Applied Physics, 2008, 41(23): 232004

    [28] Kim H K, Ling K, Kim K, Lim S. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Optics Express, 2015, 23(5): 5898-5906

    [29] Clavijo S, Diaz R E, McKinzie W E. Design methodology for sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2678-2690

    [30] Shang Y, Shen Z, Xiao S. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022-6029

    [31] Zabri S N, Cahill R, Schuchinsky A. Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement. Electronics Letters, 2015, 51(2): 162-164

    [32] Ponchak G E, Downey A N. Characterization of thin film microstrip lines on polyimide. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, 1998, 21(2): 171-176

    [33] Schallamach A, Thirion P. Dielectric loss in swollen rubber. Transactions of the Faraday Society, 1949, 45: 605-611

    [34] Jang T, Youn H, Shin Y J, Guo L J. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics, 2014, 1(3): 279-284

    Xiangkun KONG, Junyi XU, Jin-jun MO, Shaobin LIU. Broadband and conformal metamaterial absorber[J]. Frontiers of Optoelectronics, 2017, 10(2): 124
    Download Citation