• Chinese Journal of Chemical Physics
  • Vol. 33, Issue 5, 613 (2020)
Zhi-jun Zhang, Zi-fei Chen, and Jian Liu*
DOI: 10.1063/1674-0068/cjcp2006099 Cite this Article
Zhi-jun Zhang, Zi-fei Chen, Jian Liu. Path Integral Liouville Dynamics Simulations of Vibrational Spectra of Formaldehyde and Hydrogen Peroxide[J]. Chinese Journal of Chemical Physics, 2020, 33(5): 613 Copy Citation Text show less

Abstract

Formaldehyde and hydrogen peroxide are two important realistic molecules in atmospheric chemistry. We implement path integral Liouville dynamics (PILD) to calculate the dipole-derivative autocorrelation function for obtaining the infrared spectrum. In comparison to exact vibrational frequencies, PILD faithfully captures most nuclear quantum effects in vibrational dynamics as temperature changes and as the isotopic substitution occurs.
$ \begin{eqnarray} \langle {\hat A(0)\hat B(t)} \rangle = \frac{1}{Z}{{\rm Tr}}\left( {{{\hat A}^\beta }{ {\rm e}^{i\hat Ht/\hbar }}\hat B{ {\rm e}^{ - i\hat Ht/\hbar }}} \right) \end{eqnarray} $ (1)

View in Article

$ \begin{eqnarray} \hat H = \frac{1}{2}{{\bf{\hat p}}^T}{{\bf{M}}^{ - 1}}{\bf{\hat p}} + V\left( {{\bf{\hat x}}} \right) \end{eqnarray} $ (2)

View in Article

$ \begin{eqnarray} I_{\mathit{\boldsymbol{{{\dot{{{\rm \mu }}}}}}} \mathit{\boldsymbol{\dot{{{\rm \mu }}}}}}^{{{\rm Kubo}}}(\omega ) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty { {\rm d}t{{\rm }}{ {\rm e}^{ - i\omega t}}{{\langle {{\hat {\mathit{\boldsymbol{\dot{{{\rm \mu }}}}}}}(0){\hat {\mathit{\boldsymbol{\dot{{{\rm \mu }}}}}}}(t)} \rangle }_{{{\rm Kubo}}}}} \end{eqnarray} $ (3)

View in Article

$ \begin{eqnarray} n(\omega )\alpha (\omega ) = \frac{{\beta \pi }}{{3cV{\varepsilon _0}}}I_{{{\mathit{\boldsymbol{\dot{{{\rm \mu }}}}}}}{{\mathit{\boldsymbol{\dot{{{\rm \mu }}}}}}}}^{{{\rm Kubo}}}(\omega ) \end{eqnarray} $ (4)

View in Article

$ \begin{eqnarray} \langle {\hat A(0)\hat B(t)} \rangle & = & \frac{1}{Z}\int {{ {\rm d}}{{\bf{x}}_0}\int { {\rm d}{{\bf{p}}_0}\rho _W^{{{\rm eq}}}} } \left( {{{\bf{x}}_0}, {{\bf{p}}_0}} \right) \\ &&\times f_{{A^\beta }}^W\left( {{{\bf{x}}_0}, {{\bf{p}}_0}} \right){B_W}\left( {{{\bf{x}}_t}, {{\bf{p}}_t}} \right) \end{eqnarray} $ (5)

View in Article

$ \begin{array}{l} \rho _W^{{\rm{eq}}}\left( {{\bf{x}},{\bf{p}}} \right) = \frac{1}{{{{\left( {2\pi \hbar } \right)}^N}}}\int {\rm{d}} \Delta {\bf{x}}\left\langle {{\bf{x}} - \frac{{\Delta {\bf{x}}}}{2}| \cdot } \right.\\ \left. {{{\rm{e}}^{{\rm{ - }}\beta {\rm{\hat H}}}}{\rm{|}}{\bf{x}}{\rm{ + }}\frac{{\Delta {\bf{x}}}}{{\rm{2}}}} \right\rangle {{\rm{e}}^{{{i}}\Delta {{\bf{x}}^{{T}}}{\bf{p}}{\rm{/}}\hbar }} \end{array} $ (6)

View in Article

$ \begin{eqnarray} {B_W}\left( {{\bf{x}}, {\bf{p}}} \right) = \int { {\rm d}\Delta {\bf{x}}\langle {{\bf{x}} - \frac{{\Delta {\bf{x}}}}{2}\left| {\hat B} \right|{\bf{x}} + \frac{{\Delta {\bf{x}}}}{2}} \rangle } { {\rm e}^{i\Delta {{\bf{x}}^T}{\bf{p}}/\hbar }} \end{eqnarray} $ (7)

View in Article

$ \begin{eqnarray} f_{{A^\beta }}^W\left( {{\bf{x}}, {\bf{p}}} \right) = \frac{ {{\int { {\rm d}\Delta {\bf{x}}\langle {{\bf{x}} - \frac{{\Delta {\bf{x}}}}{2}\left| {{{\hat A}^\beta }} \right|{\bf{x}} +\frac{{\Delta {\bf{x}}}}{2}} \rangle } { {\rm e}^{i\Delta {{\bf{x}}^T}{\bf{p}}/\hbar }}}}}{ {{\int{ {\rm d}\Delta {\bf{x}}\langle {{\bf{x}} -\frac{{\Delta {\bf{x}}}}{2}\left| {{ {\rm e}^{ - \beta \hat H}}} \right|{\bf{x}} +\frac{{\Delta {\bf{x}}}}{2}} \rangle } { {\rm e}^{i\Delta {{\bf{x}}^T}{\bf{p}}/\hbar }}}}}\\ \end{eqnarray} $ (8)

View in Article

$ \begin{array}{l} \frac{1}{Z}\rho _W^{{\rm{eq}}}\left( {{\bf{x}},{\bf{p}}} \right) \approx \frac{1}{Z}\langle {\bf{x}}|{{\rm{e}}^{ - \beta \hat H}}|{\bf{x}}\rangle {\left( {\frac{\beta }{{2\pi }}} \right)^{N/2}}\\ \times |\det \left( {{{\bf{M}}_{{\rm{therm}}}}} \right){|^{ - 1/2}}\\ \times \exp \left[ { - \frac{\beta }{2}{{\bf{p}}^T}{\bf{M}}_{{\rm{therm}}}^{ - 1}{\bf{p}}} \right] \end{array} $ (9)

View in Article

$ \begin{eqnarray} &&f_{{A^\beta }}^W\left( {{{\bf{x}}_0}, {{\bf{p}}_0}} \right){B_W}\left( {{{\bf{x}}_t}, {{\bf{p}}_t}} \right) \\ &\approx& \left[ {{\bf{p}}_0^T{\bf{M}}_{{{\rm therm}}}^{ - 1}\left( {\frac{{\partial {\mathit{\boldsymbol{{{\rm \mu }}}}}}}{{\partial {{\bf{x}}_0}}}} \right)} \right] \cdot {\mathit{\boldsymbol{\dot{{{\rm \mu }}}}}}\left( {{{\bf{x}}_t}, {{\bf{p}}_t}} \right) \end{eqnarray} $ (10)

View in Article

$ \left\{ \begin{array}{l} {{{\bf{\dot x}}}_t} = {{\bf{M}}^{ - 1}}{{\bf{p}}_t}\\ {{{\bf{\dot p}}}_t} = - { \frac{\partial V_{{{\rm eff}}}^{{{\rm PILD}}}\left( {{{\bf{x}}_t}, {{\bf{p}}_t}} \right)}{{\partial {{\bf{x}}_t}}}} \end{array} \right. $ (11)

View in Article

$\begin{array}{l} - \frac{{\partial V_{{\rm{eff}}}^{{\rm{PILD}}}\left( {{\bf{x}},{\bf{p}}} \right)}}{{\partial {\bf{x}}}}\\ = \frac{1}{\beta }{{\bf{M}}_{{\rm{therm}}}}{{\bf{M}}^{ - 1}}\frac{\partial }{{\partial {\bf{x}}}}\ln \langle {\bf{x}}\left| {{{\rm{e}}^{ - \beta \hat H}}} \right.|{\bf{x}}\rangle \end{array}$ (12)

View in Article

$ \begin{array}{l} \langle {\bf{x}}\left| {{{\rm{e}}^{ - \beta \hat H}}} \right|{\bf{x}}\rangle \\ = \mathop {\lim }\limits_{P \to \infty } \int {{\rm{d}}{{\bf{x}}_2} \cdots {{\int {{\rm{d}}{{\bf{x}}_P}\left( {\frac{P}{{2\pi \beta {\hbar ^2}}}} \right)} }^{NP/2}}} {\left| {\bf{M}} \right|^{P/2}}\\ \times \exp \left\{ { - \frac{P}{{2\beta {\hbar ^2}}}\sum\limits_{i = 1}^P {\left[ {{{\left( {{{\bf{x}}_{i + 1}} - {{\bf{x}}_i}} \right)}^T}{\bf{M}}({{\bf{x}}_{i + 1}} - {{\bf{x}}_i})} \right]} } \right.\\ \left. { - \frac{\beta }{P}\sum\limits_{i = 1}^P {V\left( {{{\bf{x}}_i}} \right)} } \right\} \end{array} $ (13)

View in Article

$ \begin{eqnarray} \begin{array}{l} {{\bf{ \pmb{\mathsf{ ξ}} }}_1} = {{\bf{x}}_1}\\ {{\bf{ \pmb{\mathsf{ ξ}} }}_j} = {{\bf{x}}_j} - \frac{ {(j - 1){{\bf{x}}_{j + 1}} + {{\bf{x}}_1}}}{j}{{\rm }}\left( {j = \overline {2, P} } \right) \end{array} \end{eqnarray} $ (14)

View in Article

$ \langle {\bf{x}}\left| {{{\rm{e}}^{ - \beta \hat H}}} \right.|{\bf{x}}\rangle \\ = \mathop {\lim }\limits_{P \to \infty } {\int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_2} \cdots \int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_P}\left( {\frac{P}{{2\pi \beta {\hbar ^2}}}} \right)} } ^{NP/2}}{\left| {\bf{M}} \right|^{P/2}} \\ \times \exp \left\{ { - \beta \left[ {\frac{1}{2}\omega _{{{\rm ad}}}^2\sum\limits_{i = 2}^P {{\mathit{\boldsymbol{\xi}}}_i^T{{{\bf{\tilde M}}}_i}{{\mathit{\boldsymbol{\xi}}}_i}} + \phi \left( {{{\mathit{\boldsymbol{\xi}}}_1}, \cdots , {{\mathit{\boldsymbol{\xi}}}_P}} \right)} \right]} \right\}$ (15)

View in Article

$ \begin{eqnarray} \phi \left( {{{\mathit{\boldsymbol{\xi}}}_1}, \cdots , {{\mathit{\boldsymbol{\xi}}}_P}} \right) & = & \frac{1}{P}\sum\limits_{i = 1}^P {V\left( {{{\mathit{\boldsymbol{x}}}_i}} \right)} \end{eqnarray} $ (16)

View in Article

$ \begin{eqnarray} {\omega _{{{\rm ad}}}}& = &\frac{1}{{\beta \hbar }}\sqrt {\frac{P}{{{\gamma _{{{\rm ad}}}}}}} \end{eqnarray} $ (17)

View in Article

$ \begin{eqnarray} {{\bf{\tilde M}}_j} & = & {\gamma _{{{\rm ad}}}}\frac{j}{{j - 1}}{\bf{M}}{{\rm }}\left( {j = \overline {2, P} } \right) \end{eqnarray} $ (18)

View in Article

$ \begin{eqnarray} \frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_1}}}& = &\sum\limits_{i = 1}^P {\frac{{\partial \phi }}{{\partial {{\bf{x}}_i}}}} = \frac{1}{P}\sum\limits_{i = 1}^P {\frac{{\partial V\left( {{{\bf{x}}_i}} \right)}}{{\partial {{\bf{x}}_i}}}} \end{eqnarray} $ (19)

View in Article

$ \begin{eqnarray} \frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_j}}}& = & \frac{{\partial \phi }}{{\partial {{\bf{x}}_j}}} + \frac{{j - 2}}{{j - 1}}\frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_{j - 1}}}}{{\rm }}\left( {j = \overline {2, P} } \right) \end{eqnarray} $ (20)

View in Article

$ \begin{eqnarray} - {\frac{1}{\beta }}\frac{\partial }{{\partial {\bf{x}}}}\ln \langle {\bf{x}}|{{\rm{e}}^{ - \beta \hat H}}|{\bf{x}}\rangle \mathop = \limits^{{{\bf{ \pmb{\mathsf{ ξ}} }}_1} \equiv {{\bf{x}}_1} \equiv {\bf{x}}} \frac{{\mathop {\lim }\limits_{P \to \infty } \int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_2}} \cdots \int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_P}} \exp \left\{ { -\beta \left[ {\sum\limits_{j = 2}^P {\frac{1}{2}\omega _{ {\rm ad}}^2{\mathit{\boldsymbol{\xi}}}_j^T{{{\bf{\tilde M}}}_{{\rm j}}}{\mathit{\boldsymbol{\xi}}}_j^{}} + \phi \left( {{{\mathit{\boldsymbol{\xi}}}_1}, \cdots , {{\mathit{\boldsymbol{\xi}}}_P}} \right)} \right]} \right\}\frac{1}{P}\sum\limits_{j = 1}^P {V'\left( {{{\bf{x}}_j}} \right)} }}{{\mathop {\lim }\limits_{P \to \infty } \int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_2}} \cdots \int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_P}} \exp \left\{ { - \beta \left[ {\sum\limits_{j = 2}^P {\frac{1}{2}\omega _{ {\rm ad}}^2{\mathit{\boldsymbol{\xi}}}_j^T{{{\bf{\tilde M}}}_{{\rm j}}}{\mathit{\boldsymbol{\xi}}}_j^{}} + \phi \left( {{{\mathit{\boldsymbol{\xi}}}_1}, \cdots , {{\mathit{\boldsymbol{\xi}}}_P}} \right)} \right]} \right\}}} \, \, \, \, \, \end{eqnarray} $ (21)

View in Article

$ \begin{eqnarray} && - \frac{1}{\beta }\frac{\partial }{{\partial {\bf{x}}}}\ln \langle {\bf{x}}|{{\rm{e}}^{ - \beta \hat H}}|{\bf{x}}\rangle \;\mathop = \limits^{{{\bf{ \pmb{\mathsf{ ξ}} }}_1} \equiv {{\bf{x}}_1} \equiv {\bf{x}}} \frac{A}{B} \end{eqnarray} $ (22)

View in Article

$ \begin{array}{l} A = \mathop {\lim }\limits_{P \to \infty } \int {\left( {\prod\limits_{j = 2}^P {{\rm{d}}{{\bf{\xi }}_j}{\rm{d}}{\bf{p}}_j^{}} } \right)} \\ \times \exp \{ - \beta [\sum\limits_{j = 2}^P {\left( {\frac{1}{2}{\bf{p}}_j^T{\bf{\tilde M}}_j^{ - 1}{\bf{p}}_j^{} + \frac{1}{2}\omega _{{\rm{ad}}}^2{\bf{\xi }}_j^T{{{\bf{\tilde M}}}_{\rm{j}}}{\bf{\xi }}_j^{}} \right)} \\ + \phi \left( {{{\bf{\xi }}_1}, \cdots ,{{\bf{\xi }}_P}} \right)]\} \frac{1}{P}\sum\limits_{j = 1}^P {} V'\left( {{{\bf{x}}_j}} \right)\\ B = \mathop {\lim }\limits_{P \to \infty } \int {\left( {\prod\limits_{j = 2}^P {{\rm{d}}{{\bf{\xi }}_j}{\rm{d}}{\bf{p}}_j^{}} } \right)} \\ \times \exp {\rm{\{ }} - \beta {\rm{[}}\sum\limits_{j = 2}^P {} (\frac{1}{2}{\bf{p}}_j^T{\bf{\tilde M}}_j^{ - 1}{\bf{p}}_j^{}\\ + \frac{1}{2}\omega _{{\rm{ad}}}^2{\bf{\xi }}_j^T{{{\bf{\tilde M}}}_{\rm{j}}}{\bf{\xi }}_j^{}) + \phi \left( {{{\bf{\xi }}_1}, \cdots ,{{\bf{\xi }}_P}} \right)]\;\} \end{array} $ ()

View in Article

$ \left\{ \begin{array}{l} {{{\mathit{\boldsymbol{\dot \xi}}}}_1} \equiv {{{\mathit{\boldsymbol{\dot x}}}}_1} \equiv {\mathit{\boldsymbol{\dot x}}} = {{\bf{M}}^{ - 1}}{\bf{p}}, \\ {{{\bf{\dot p}}}_1} \equiv {\bf{\dot p}} = - {{\bf{M}}_{{{\rm therm}}}}{{\bf{M}}^{ - 1}} {\frac{\partial \phi }{{\partial {{\mathit{\boldsymbol{\xi}}}_1}}}}, \\ {{{\mathit{\boldsymbol{\dot \xi}}}}_j} = {\bf{\tilde M}}_j^{ - 1}{{\bf{p}}_j}, \\ {{{\mathit{\boldsymbol{\dot p}}}}_j} = - \omega _{{{\rm ad}}}^2{{{\bf{\tilde M}}}_j}{{\mathit{\boldsymbol{\xi}}}_j} - { \frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_j}}}}{{\rm }}\left( {j = \overline {2, P} } \right) \end{array} \right. $ (23)

View in Article

$ \left\{ {\begin{array}{*{20}{l}} {{{{\bf{\dot \xi }}}_1} \equiv {{{\bf{\dot x}}}_1} \equiv {\bf{\dot x}} = {{\bf{M}}^{ - 1}}{\bf{p}},}\\ {{{{\bf{\dot p}}}_1} \equiv {\bf{\dot p}} = - {{\bf{M}}_{{\rm{therm}}}}{{\bf{M}}^{ - 1}}\frac{{\partial \phi }}{{\partial {{\bf{\xi }}_1}}},}\\ {{{{\bf{\dot \xi }}}_j} = {\bf{\tilde M}}_j^{ - 1}{{\bf{p}}_j},}\\ {{{{\bf{\dot p}}}_j} = - \omega _{{\rm{ad}}}^2{{{\bf{\tilde M}}}_j}{{\bf{\xi }}_j} - \frac{{\partial \phi }}{{\partial {{\bf{\xi }}_j}}} - {\gamma _{{\rm{Lang}}}}{{\bf{p}}_j}}\\ {\quad {\rm{ + }}\sqrt {\frac{{2{\gamma _{{\rm{Lang}}}}}}{\beta }} {\bf{\tilde M}}_j^{1/2}{{\bf{\eta }}_j}(t),\quad \left( {j = \overline {2,P} } \right)} \end{array}} \right. $ (24)

View in Article

$ \begin{eqnarray} \begin{array}{l} {{\bf{p}}_1} \leftarrow {{\bf{p}}_1} - {{\bf{M}}_{{{\rm therm}}}}{{\bf{M}}^{ - 1}} {\frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_1}}}}\frac{{\Delta t}}{2}, \\ {{\bf{p}}_j} \leftarrow {{\bf{p}}_j} - {\frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_j}}}}\frac{{\Delta t}}{2} - \omega _{{{\rm ad}}}^2{{{\bf{\tilde M}}}_j}{{\mathit{\boldsymbol{\xi}}}_j}\frac{{\Delta t}}{2}{{\rm }}, \quad \left( {j = \overline {2, P} } \right) \end{array} \end{eqnarray} $ (25)

View in Article

$ \begin{eqnarray} {{\mathit{\boldsymbol{\xi}}}_j} &\leftarrow& {{\mathit{\boldsymbol{\xi}}}_j} + {\bf{\tilde M}}_j^{ - 1}{{\bf{p}}_j}\frac{{\Delta t}}{2}{{\rm }}, \quad \left( {j = \overline {1, P} } \right) \end{eqnarray} $ (26)

View in Article

$ \begin{eqnarray} {{\bf{p}}_j} &\leftarrow& {c_1}{{\bf{p}}_j} + {c_2}\sqrt {\frac{1}{\beta }} {\left( {{{{\bf{\tilde M}}}_j}} \right)^{1/2}}{}{{\mathit{\boldsymbol{\eta}}}_j}, \quad {{\rm }}\left( {j = \overline {2, P} } \right) \end{eqnarray} $ (27)

View in Article

$ \begin{eqnarray} {{\mathit{\boldsymbol{\xi}}}_j} \leftarrow {{\mathit{\boldsymbol{\xi}}}_j} + {\bf{\tilde M}}_j^{ - 1}{{\bf{p}}_j}\frac{{\Delta t}}{2}, \quad \left( {j = \overline {1, P} } \right) \end{eqnarray} $ (28)

View in Article

$ \begin{eqnarray} \begin{array}{l} {{\bf{p}}_1} \leftarrow {{\bf{p}}_1} - {{\bf{M}}_{{{\rm therm}}}}{{\bf{M}}^{ - 1}} {\frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_1}}}}\frac{{\Delta t}}{2}, \\ {{\bf{p}}_j} \leftarrow {{\bf{p}}_j} - { \frac{{\partial \phi }}{{\partial {{\mathit{\boldsymbol{\xi}}}_j}}}}\frac{{\Delta t}}{2} - \omega _{{{\rm ad}}}^2{{{\bf{\tilde M}}}_j}{{\mathit{\boldsymbol{\xi}}}_j}\frac{{\Delta t}}{2}{{\rm }}, \quad \left( {j = \overline {2, P} } \right) \end{array} \end{eqnarray} $ (29)

View in Article

$ \begin{eqnarray} \begin{array}{l} {c_1} = \exp \left[ { - {\gamma _{{{\rm Lang}}}}\Delta t} \right], \\ {c_2} = \sqrt {1 - c_1{^2}} \end{array} \end{eqnarray} $ (30)

View in Article

$ \begin{eqnarray} {\mathcal{H}_{kl}} = \frac{1}{{{m_k}{m_l}}}\frac{{{\partial ^2}V}}{{\partial {x_k}\partial {x_l}}} \end{eqnarray} $ (31)

View in Article

$ \begin{eqnarray} {H}({\bf{x}} + \Delta {\bf{x}}) &\approx& \frac{1}{2}{{\bf{p}}^T}{{\bf{M}}^{ - 1}}{\bf{p}} + V({\bf{x}}) + {\left( {\frac{{\partial V}}{{\partial {\bf{x}}{{\rm }}}}} \right)^T}\Delta {\bf{x}} \\ &&+ \frac{1}{2}\Delta {{\bf{x}}^T}\mathcal{H}\Delta {\bf{x}} \end{eqnarray} $ (32)

View in Article

$ \begin{eqnarray} {{\bf{T}}^T}\mathcal{H}{\bf{T}} = {\bf{\Lambda }} \end{eqnarray} $ (33)

View in Article

$ \begin{eqnarray} {\bf{X}} = {{\bf{T}}^T}{{\bf{M}}^{1/2}}{\bf{x}} \end{eqnarray} $ (34)

View in Article

$ \begin{eqnarray} \begin{array}{l} {{\bf{D}}_1} = {(1, 0, 0, 4, 0, 0, 1, 0, 0)^T}\\ {{\bf{D}}_2} = {(0, 1, 0, 0, 4, 0, 0, 1, 0)^T}\\ {{\bf{D}}_3} = {(0, 0, 1, 0, 0, 4, 0, 0, 1)^T} \end{array} \end{eqnarray} $ (35)

View in Article

$ \begin{eqnarray} {\bf{I}} = {{\rm }}\sum\limits_{i = 1}^{{N_{ {\rm atom}}}} {{m_i}\left( {{{\left| {{{\bf{r}}_i}} \right|}^2} - {{\bf{r}}_i} \cdot {{\bf{r}}_i}^T} \right)} \end{eqnarray} $ (36)

View in Article

$ \begin{eqnarray} {{\bf{W}}^T}{\bf{IW}} = {\bf{\Phi }} \end{eqnarray} $ (37)

View in Article

$ \begin{eqnarray} ({P_{\alpha }})_i = {{\bf{r}}_i} \cdot {{\bf{W}}_\alpha } \end{eqnarray} $ (38)

View in Article

$ \begin{eqnarray} \begin{array}{l} {D_{4\alpha , i}} = \left[ {{{\left( {{P_y}} \right)}_i}{W_{\alpha , 3}} - {{\left( {{P_z}} \right)}_i}{W_{\alpha , 2}}} \right]\sqrt {{m_i}} \\ {D_{5\alpha , i}} = \left[ {{{\left( {{P_z}} \right)}_i}{W_{\alpha , 1}} - {{\left( {{P_x}} \right)}_i}{W_{\alpha , 3}}} \right]\sqrt {{m_i}} \\ {D_{6\alpha , i}} = \left[ {{{\left( {{P_x}} \right)}_i}{W_{\alpha , 2}} - {{\left( {{P_y}} \right)}_i}{W_{\alpha, 1}}} \right]\sqrt {{m_i}} \end{array} \end{eqnarray} $ (39)

View in Article

$ \begin{eqnarray} {\bf{L}}_{ {\rm vib}}^T{\left( {{{\bf{D}}^T}{\bf{HD}}} \right)_{ {\rm vib}}}{{\bf{L}}_{ {\rm vib}}} = {{\bf{\Lambda }}_{ {\rm vib}}} \end{eqnarray} $ (40)

View in Article

$ Q(u) = \frac{1}{{Q({u_i})}} = \frac{{\tanh ({u_i}/2)}}{{{u_i}/2}} $ (41)

View in Article

$ \begin{eqnarray} Q(u) = \frac{1}{Q({u_i})} = \frac{{\tanh ({u_i}/2)}}{{{u_i}/2}} \end{eqnarray} $ (42)

View in Article

$ \begin{eqnarray} \langle {{Q_k}} \rangle = \langle {\sum\limits_j {{{\left| {{\bf{b}}_j^T({\bf{x}}) \cdot {{\bf{b}}_{0k}}({{\bf{x}}_0})} \right|}^2}{Q_j}({\bf{x}})} } \rangle \end{eqnarray} $ (43)

View in Article

$ \begin{eqnarray} {{\bf{M}}_{{{\rm therm}}}} = {{\bf{M}}^{1/2}}{{\bf{T}}_0}\langle {\bf{Q}} \rangle {\bf{T}}_0^T{{\bf{M}}^{1/2}} \end{eqnarray} $ (44)

View in Article

Zhi-jun Zhang, Zi-fei Chen, Jian Liu. Path Integral Liouville Dynamics Simulations of Vibrational Spectra of Formaldehyde and Hydrogen Peroxide[J]. Chinese Journal of Chemical Physics, 2020, 33(5): 613
Download Citation