• Chinese Journal of Chemical Physics
  • Vol. 33, Issue 5, 613 (2020)
Zhi-jun Zhang, Zi-fei Chen, and Jian Liu*
DOI: 10.1063/1674-0068/cjcp2006099 Cite this Article
Zhi-jun Zhang, Zi-fei Chen, Jian Liu. Path Integral Liouville Dynamics Simulations of Vibrational Spectra of Formaldehyde and Hydrogen Peroxide[J]. Chinese Journal of Chemical Physics, 2020, 33(5): 613 Copy Citation Text show less

Abstract

Formaldehyde and hydrogen peroxide are two important realistic molecules in atmospheric chemistry. We implement path integral Liouville dynamics (PILD) to calculate the dipole-derivative autocorrelation function for obtaining the infrared spectrum. In comparison to exact vibrational frequencies, PILD faithfully captures most nuclear quantum effects in vibrational dynamics as temperature changes and as the isotopic substitution occurs.
$ A^(0)B^(t)=1ZTr(A^βeiH^t/B^eiH^t/) $ (1)

View in Article

$ H^=12p^TM1p^+V(x^) $ (2)

View in Article

$ I\boldsymbolμ˙\boldsymbolμ˙Kubo(ω)=12πdteiωt\boldsymbolμ˙^(0)\boldsymbolμ˙^(t)Kubo $ (3)

View in Article

$ n(ω)α(ω)=βπ3cVε0I\boldsymbolμ˙\boldsymbolμ˙Kubo(ω) $ (4)

View in Article

$ A^(0)B^(t)=1Zdx0dp0ρWeq(x0,p0)×fAβW(x0,p0)BW(xt,pt) $ (5)

View in Article

$ ρWeq(x,p)=1(2π)NdΔxxΔx2|eβH^|x+Δx2eiΔxTp/ $ (6)

View in Article

$ BW(x,p)=dΔxxΔx2|B^|x+Δx2eiΔxTp/ $ (7)

View in Article

$ fAβW(x,p)=dΔxxΔx2|A^β|x+Δx2eiΔxTp/dΔxxΔx2|eβH^|x+Δx2eiΔxTp/ $ (8)

View in Article

$ 1ZρWeq(x,p)1Zx|eβH^|x(β2π)N/2×|det(Mtherm)|1/2×exp[β2pTMtherm1p] $ (9)

View in Article

$ fAβW(x0,p0)BW(xt,pt)[p0TMtherm1(\boldsymbolμx0)]\boldsymbolμ˙(xt,pt) $ (10)

View in Article

$ \left\{ x˙t=M1ptp˙t=VeffPILD(xt,pt)xt \right. $ (11)

View in Article

$VeffPILD(x,p)x=1βMthermM1xlnx|eβH^|x$ (12)

View in Article

$ x|eβH^|x=limPdx2dxP(P2πβ2)NP/2|M|P/2×exp{P2β2i=1P[(xi+1xi)TM(xi+1xi)]βPi=1PV(xi)} $ (13)

View in Article

$ ξξ1=x1ξξj=xj(j1)xj+1+x1j(j=2,P) $ (14)

View in Article

$ \langle {\bf{x}}\left| {{{\rm{e}}^{ - \beta \hat H}}} \right.|{\bf{x}}\rangle \ = \mathop {\lim }\limits_{P \to \infty } {\int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_2} \cdots \int { {\rm d}{{\mathit{\boldsymbol{\xi}}}_P}\left( {\frac{P}{{2\pi \beta {\hbar ^2}}}} \right)} } ^{NP/2}}{\left| {\bf{M}} \right|^{P/2}} \ \times \exp \left\{ { - \beta \left[ {\frac{1}{2}\omega _{{{\rm ad}}}^2\sum\limits_{i = 2}^P {{\mathit{\boldsymbol{\xi}}}_i^T{{{\bf{\tilde M}}}_i}{{\mathit{\boldsymbol{\xi}}}_i}} + \phi \left( {{{\mathit{\boldsymbol{\xi}}}_1}, \cdots , {{\mathit{\boldsymbol{\xi}}}_P}} \right)} \right]} \right\}$ (15)

View in Article

$ ϕ(\boldsymbolξ1,,\boldsymbolξP)=1Pi=1PV(\boldsymbolxi) $ (16)

View in Article

$ ωad=1βPγad $ (17)

View in Article

$ M~j=γadjj1M(j=2,P) $ (18)

View in Article

$ ϕ\boldsymbolξ1=i=1Pϕxi=1Pi=1PV(xi)xi $ (19)

View in Article

$ ϕ\boldsymbolξj=ϕxj+j2j1ϕ\boldsymbolξj1(j=2,P) $ (20)

View in Article

$ 1βxlnx|eβH^|x=ξξ1x1xlimPd\boldsymbolξ2d\boldsymbolξPexp{β[j=2P12ωad2\boldsymbolξjTM~j\boldsymbolξj+ϕ(\boldsymbolξ1,,\boldsymbolξP)]}1Pj=1PV(xj)limPd\boldsymbolξ2d\boldsymbolξPexp{β[j=2P12ωad2\boldsymbolξjTM~j\boldsymbolξj+ϕ(\boldsymbolξ1,,\boldsymbolξP)]} $ (21)

View in Article

$ 1βxlnx|eβH^|x=ξξ1x1xAB $ (22)

View in Article

$ A=limP(j=2Pdξjdpj)×exp{β[j=2P(12pjTM~j1pj+12ωad2ξjTM~jξj)+ϕ(ξ1,,ξP)]}1Pj=1PV(xj)B=limP(j=2Pdξjdpj)×exp{β[j=2P(12pjTM~j1pj+12ωad2ξjTM~jξj)+ϕ(ξ1,,ξP)]} $ ()

View in Article

$ \left\{ \boldsymbolξ˙1\boldsymbolx˙1\boldsymbolx˙=M1p,p˙1p˙=MthermM1ϕ\boldsymbolξ1,\boldsymbolξ˙j=M~j1pj,\boldsymbolp˙j=ωad2M~j\boldsymbolξjϕ\boldsymbolξj(j=2,P) \right. $ (23)

View in Article

$ \left\{ {ξ˙1x˙1x˙=M1p,p˙1p˙=MthermM1ϕξ1,ξ˙j=M~j1pj,p˙j=ωad2M~jξjϕξjγLangpj+2γLangβM~j1/2ηj(t),(j=2,P)} \right. $ (24)

View in Article

$ p1p1MthermM1ϕ\boldsymbolξ1Δt2,pjpjϕ\boldsymbolξjΔt2ωad2M~j\boldsymbolξjΔt2,(j=2,P) $ (25)

View in Article

$ \boldsymbolξj\boldsymbolξj+M~j1pjΔt2,(j=1,P) $ (26)

View in Article

$ pjc1pj+c21β(M~j)1/2\boldsymbolηj,(j=2,P) $ (27)

View in Article

$ \boldsymbolξj\boldsymbolξj+M~j1pjΔt2,(j=1,P) $ (28)

View in Article

$ p1p1MthermM1ϕ\boldsymbolξ1Δt2,pjpjϕ\boldsymbolξjΔt2ωad2M~j\boldsymbolξjΔt2,(j=2,P) $ (29)

View in Article

$ c1=exp[γLangΔt],c2=1c12 $ (30)

View in Article

$ Hkl=1mkml2Vxkxl $ (31)

View in Article

$ H(x+Δx)12pTM1p+V(x)+(Vx)TΔx+12ΔxTHΔx $ (32)

View in Article

$ TTHT=Λ $ (33)

View in Article

$ X=TTM1/2x $ (34)

View in Article

$ D1=(1,0,0,4,0,0,1,0,0)TD2=(0,1,0,0,4,0,0,1,0)TD3=(0,0,1,0,0,4,0,0,1)T $ (35)

View in Article

$ I=i=1Natommi(|ri|2ririT) $ (36)

View in Article

$ WTIW=Φ $ (37)

View in Article

$ (Pα)i=riWα $ (38)

View in Article

$ D4α,i=[(Py)iWα,3(Pz)iWα,2]miD5α,i=[(Pz)iWα,1(Px)iWα,3]miD6α,i=[(Px)iWα,2(Py)iWα,1]mi $ (39)

View in Article

$ LvibT(DTHD)vibLvib=Λvib $ (40)

View in Article

$ Q(u) = \frac{1}{{Q({u_i})}} = \frac{{\tanh ({u_i}/2)}}{{{u_i}/2}} $ (41)

View in Article

$ Q(u)=1Q(ui)=tanh(ui/2)ui/2 $ (42)

View in Article

$ Qk=j|bjT(x)b0k(x0)|2Qj(x) $ (43)

View in Article

$ Mtherm=M1/2T0QT0TM1/2 $ (44)

View in Article

Zhi-jun Zhang, Zi-fei Chen, Jian Liu. Path Integral Liouville Dynamics Simulations of Vibrational Spectra of Formaldehyde and Hydrogen Peroxide[J]. Chinese Journal of Chemical Physics, 2020, 33(5): 613
Download Citation