[1] PETROVIC J J. MoSi2-based high-temperature structural silicides[J]. MRS Bull, 1993, 18(7): 35-40.
[2] YAO Z, STIGLICH J, SUDARSHAN T S. Molybdenum silicide based materials and their properties[J]. J Mater Eng Perform, 1999, 8(3): 291-304.
[5] TAO X, XU X, GUO L, et al. MoSi2-borosilicate glass coating on fibrous ceramics prepared by in-situ reaction method for infrared radiation[J]. Mater Des, 2016, 103: 144-151.
[6] WANG Y, SU D, JI H, et al. Gradient structure high emissivity MoSi2-SiO2-SiOC coating for thermal protective application[J]. J Alloys Compd, 2017, 703: 437-447.
[7] SHAO G, WU X, KONG Y, et al. Thermal shock behavior and infrared radiation property of integrative insulations consisting of MoSi2/borosilicate glass coating and fibrous ZrO2 ceramic substrate[J]. Surf Coat Technol, 2015, 270: 154-163.
[8] CHOU T C, NIEH T G. Mechanism of MoSi2 pest during low temperature oxidation[J]. J Mater Res, 1993, 8(1):214-226.
[9] MESCHTER P J. Low-temperature oxidation of molybdenum disilicide[J]. Metal Materi Trans A, 1992, 23(6): 1763-1772.
[10] KUROKAWA K, HOUZUMI H, SAEKI I, et al. Low temperature oxidation of fully dense and porous MoSi2[J]. Mater Sci Eng: A, 1999, 261(1/2): 292-299.
[11] WANG G, JIANG W, BAI G, et al. Effect of addition of oxides on low-temperature oxidation of molybdenum disilicide[J]. J Am Ceram Soc, 2003, 86(4): 731-734.
[13] GAO P Z, CHENG L, YUAN Z, et al. High temperature mechanical retention characteristics and oxidation behaviors of the MoSi2(Cr5Si3)-RSiC composites prepared via a PIP-AAMI combined process[J]. J Adv Ceram, 2019, 8: 196-208.
[14] YANAGIHARA K, PRZYBYLSKI K, MARUYAMA T. The role of microstructure on pesting during oxidation of MoSi2 and Mo(Si, Al)2 at 773 K[J]. Oxid Met, 1997, 47(3/4): 277-293.
[15] INGEMARSSON L. Oxidation behaviour of a Mo(Si, Al)2 based composite at 1 500 ℃[J]. Intermetallics, 2011, 19(9): 1319-1329.
[16] FENG P, WANG X, HE Y, et al. Effect of high-temperature preoxidation treatment on the low-temperature oxidation behavior of a MoSi2-based composite at 500 ℃[J]. J Alloys Compd, 2009, 473(1): 185-189.
[17] YAKABOYLU G A, YUMAK T, SABOLSKY K, et al. Effect of high temperature preoxidation treatment on the oxidation behavior of MoSi2-and WSi2-Al2O3 composites[J]. J Alloys Compd, 2020, 816: 152499.
[18] SHAO G, WU X, CUI S, et al. High emissivity MoSi2-TaSi2borosilicate glass porous coating for fibrous ZrO2 ceramic by a rapid sintering method[J]. J Alloys Compd, 2017, 690: 63-71.
[19] DU B, ZHOU S, ZHANG X, et al. Preparation of a high spectral emissivity TaSi2-based hybrid coating on SiOC-modified carbon-bonded carbon fiber composite by a flash sintering method[J]. Surf Coat Technol, 2018, 350: 146-153.
[20] TAO X, LIU J, XU X, et al. Comparative study of MoSi2-borosilicate glass coatings on fibrous ceramics prepared by in-situ reaction method and two-step method[J]. J Alloys Compd, 2016, 684: 488-495.
[21] WIRKUS C D, WILDER D R. High-temperature oxidation of molybdenum disilicide[J]. J Am Ceram Soc, 1966, 49(4): 173-177.
[22] BARTLETT R W, MCCAMONT J W, GAGE P R. Structure and chemistry of oxide films thermally grown on molybdenum silicides[J]. J Am Ceram Soc, 1965, 48(11): 551-558.
[23] BERTOLUZZA A, FAGNANO C, ANTONIETTA MORELLI M, et al. Raman and infrared spectra on silica gel evolving toward glass[J]. J Non-Cryst Solids, 1982, 48(1): 117-128.
[24] ZHAO J, HE H, HU W, et al. Interface characterization of Mo/Si multilayers[J]. Chin Opt Lett, 2016, 14(8): 83401-83404.
[25] BUNDSCHUH K, SCHTZE M. Materials for temperatures above 1 500 ℃ in oxidizing atmospheres. Part I: Basic considerations on materials selection[J]. Mater Corros, 2001, 52(3): 204-212