• Acta Photonica Sinica
  • Vol. 51, Issue 10, 1006002 (2022)
Hangzhou YANG, Xin LIU, Pengyu NAN, and Guoguo XIN*
Author Affiliations
  • School of Physics,Northwest University,Xi′an710069,China
  • show less
    DOI: 10.3788/gzxb20225110.1006002 Cite this Article
    Hangzhou YANG, Xin LIU, Pengyu NAN, Guoguo XIN. Progress in Research of Optical Fiber High Temperature and Strain Sensor(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1006002 Copy Citation Text show less
    Schematic diagram of the dual RFBG sensor structure[17]
    Fig. 1. Schematic diagram of the dual RFBG sensor structure17
    Schematic diagram of multi-mode FBG structure[18]
    Fig. 2. Schematic diagram of multi-mode FBG structure18
    Schematic diagram of cascaded RFBG sensor structure[23]
    Fig. 3. Schematic diagram of cascaded RFBG sensor structure23
    Schematic diagram of the sensor structure of the FPI cascaded RFBG[39]
    Fig. 4. Schematic diagram of the sensor structure of the FPI cascaded RFBG39
    Micrograph of the FPI sensor based on CDF[42]
    Fig. 5. Micrograph of the FPI sensor based on CDF42
    Schematic diagram of the sensor structure[43]
    Fig. 6. Schematic diagram of the sensor structure43
    Schematic diagram of the FPI cascaded with RFBG sensor structure[44]
    Fig. 7. Schematic diagram of the FPI cascaded with RFBG sensor structure44
    Schematic diagram of the FPI sensor structure based on PCF[45]
    Fig. 8. Schematic diagram of the FPI sensor structure based on PCF45
    Schematic diagram of the sensor structure based on double FPIs[46]
    Fig. 9. Schematic diagram of the sensor structure based on double FPIs46
    Micrograph of the FPI sensor based on bubble cavity[47]
    Fig. 10. Micrograph of the FPI sensor based on bubble cavity47
    Schematic diagram of the FPI sensor structure based on HACF[48]
    Fig. 11. Schematic diagram of the FPI sensor structure based on HACF48
    Schematic diagram of the FPI sensor structure[50]
    Fig. 12. Schematic diagram of the FPI sensor structure50
    Schematic diagram of the sensor package base[60]
    Fig. 13. Schematic diagram of the sensor package base60
    YearSensor structure

    Temperature

    range

    Temperature

    sensitivity

    Strain

    range

    Strain

    sensitivity

    Temperature compensationRef.
    2009CCG24~900 ℃13.8 pm/℃0~1 000 με1.1 pm/μεNo11
    2010Long-period FBG25~700 ℃163 pm/℃0~15 000 με0.31 pm/μεNo13
    2014Etched RFBG24~800 ℃12.2 pm/℃0~1 000 με4.5 pm/μεNo14
    2015Cascaded RFBG25~900 ℃15.2 pm/℃0~1 000 με0.81 pm/μεNo15
    2017Double RFBG20~800 ℃16.3 pm/℃0~1 000 με1.57 pm/μεNo17
    2018Sapphire FBG26~1 600 ℃34.96 pm/℃0~1 300 με1.45 pm/μεNo20
    2019Dual FBG100~800 ℃12.5 pm/℃0~1 000 με3.25 pm/μεNo21
    2020Off-axis FBG23~300 ℃12 pm/℃0~522 με1.44 pm/μεNo22
    2022Two RFBG100~1 000 ℃15.7 pm/℃0~120 με5.46 pm/μεYes23
    Table 1. Comparison of measurement parameters of FBG type high temperature and strain sensor 1113-151720-23
    YearSensor structure

    Temperature

    range

    Temperature

    sensitivity

    Strain

    range

    Strain

    sensitivity

    Temperature compensationRef.
    2009HCPCF FPI100~700 ℃163.55 pm/℃0~414 με5.94 nm/μεNo33
    2014EFPI-FBG25~500 ℃13.6 pm/℃0~10 000 με46 nm/μεYes37
    2016FPI-RFBG19~600 ℃13.97 pm/℃0~600 με1.23 pm/μεNo39
    2018FPI-FBG25~500 ℃15.2 pm/℃0~650 με0.81 pm/μεNo40
    2019CDF FPI20~1 200 ℃15.6 pm/℃0~2 000 με1.5 pm/μεNo42
    2020RFBG-FPI100~1 000 ℃18.01 pm/℃0~450 με2.17 pm/μεYes44
    2021PCF FPI28~1 100 ℃426.7 pm/℃0~9 436.66 με25.1 pm/μεNo45
    2022Double FPIs26~1 000 ℃15.14 pm/℃0~350 με127.32 pm/μεYes46
    Table 2. Comparison of measurement parameters of optical fiber FPI type high temperature and strain sensor 333739-404244-46
    Hangzhou YANG, Xin LIU, Pengyu NAN, Guoguo XIN. Progress in Research of Optical Fiber High Temperature and Strain Sensor(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1006002
    Download Citation