• Acta Photonica Sinica
  • Vol. 52, Issue 1, 0110002 (2023)
Ying SUN1,2, Zhiqiang HOU1,2,*, Chen YANG1,2, Sugang MA1,2, and Jiulun FAN1
Author Affiliations
  • 1School of Computer Science and Technology,Xi'an University of Posts & Telecommunications,Xi'an 710121,China
  • 2Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing,Xi'an 710121,China
  • show less
    DOI: 10.3788/gzxb20235201.0110002 Cite this Article
    Ying SUN, Zhiqiang HOU, Chen YANG, Sugang MA, Jiulun FAN. Object Detection Algorithm Based on Dual-modal Fusion Network[J]. Acta Photonica Sinica, 2023, 52(1): 0110002 Copy Citation Text show less
    References

    [1] Y ZHOU, O TUZEL. Voxelnet: End-to-end learning for point cloud based 3d object detection, 4490-4499(2018).

    [2] S KIM, W J SONG, S H KIM. Infrared variation optimized deep convolutional neural network for robust automatic ground target recognition, 1-8(2017).

    [3] R GIRSHICK, J DONAHUE, T DARRELL. Rich feature hierarchies for accurate object detection and semantic segmentation, 580-587(2014).

    [4] R GIRSHICK. Fast R-CNN, 1440-1448(2015).

    [5] S REN, K HE, R GIRSHICK. Faster R-CNN: towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28, 91-99(2015).

    [6] W LIU, D ANGUELOV, D ERHAN. Ssd: single shot multibox detector, 21-37(2016).

    [7] J REDMON, S DIVVALA, R GIRSHICK. You only look once: unified, real-time object detection, 779-788(2016).

    [8] J REDMON, A FARHADI. YOLO9000: better, faster, stronger, 7263-7271(2017).

    [9] J REDMON, A FARHADI. Yolov3: an incremental improvement. arXiv preprint(2018).

    [10] A BOCHKOVSKIY, C Y WANG, H Y M LIAO. Yolov4: optimal speed and accuracy of object detection. arXiv preprint(2020).

    [11] H LAW, J DENG. Cornernet: detecting objects as paired keypoints, 734-750(2018).

    [12] X ZHOU, D WANG, P KRÄHENBÜHL. Objects as points. arXiv preprint(2019).

    [13] Z TIAN, C SHEN, H CHEN. Fcos: fully convolutional one-stage object detection, 9627-9636(2019).

    [14] F ZHAO, R WEI, Y CHAO et al. Infrared bird target detection based on temporal variation filtering and a gaussian heat-map perception network. Applied Sciences, 12, 5679-5694(2022).

    [15] K ZHU, C XU, Y WEI et al. Fast-PLDN: fast power line detection network. Journal of Real-Time Image Processing, 19, 3-13(2022).

    [16] H XU, X WANG, J MA. DRF: Disentangled representation for visible and infrared image fusion. IEEE Transactions on Instrumentation and Measurement, 70, 1-13(2021).

    [17] X YAO, S ZHAO, P XU et al. Multi-source domain adaptation for object detection, 3273-3282(2021).

    [18] C DEVAGUPTAPU, N AKOLEKAR, MM SHARMA et al. Borrow from anywhere: pseudo multi-modal object detection in thermal imagery, 1029-1038(2019).

    [19] L YANG, R MA, A ZAKHOR. Drone object detection using RGB/IR fusion. arXiv preprint(2022).

    [20] Ming ZHAO, Haoran ZHANG. An infrared object detection method based on cross-domain fusion network. Acta Photonica Sinica, 50, 1110001(2021).

    [21] Q WANG, Y CHI, T SHEN et al. Improving RGB-infrared object detection by reducing cross-modality redundancy. Remote Sensing, 14, 2020(2022).

    [22] X GENG, M LI, W LIU et al. Person tracking by detection using dual visible-infrared cameras. IEEE Internet of Things Journal, 9, 23241-23251(2022).

    [23] Tao ZHOU, Yali DONG, Shan LIU et al. Cross-modality multi-encoder hybrid attention U-net for lung tumors images segmentation. Acta Photonica Sinica, 51, 0410006(2022).

    [24] Y ZHANG, Z YIN, L NIE et al. Attention based multi-layer fusion of multispectral images for pedestrian detection. IEEE Access, 8, 165071-165084(2020).

    [25] Z CAO, H YANG, J ZHAO et al. Attention fusion for one-stage multispectral pedestrian detection. Sensors, 21, 4184-4198(2021).

    [26] D KONIG, M ADAM, C JARVERS et al. Fully convolutional region proposal networks for multispectral person detection, 49-56(2017).

    [27] L FU, W GU, Y AI et al. Adaptive spatial pixel-level feature fusion network for multispectral pedestrian detection. Infrared Physics & Technology, 116, 103770(2021).

    [28] J WAGNER, V FISCHER, M HERMAN et al. Multispectral pedestrian detection using deep fusion convolutional neural networks, 587, 509-514(2016).

    [29] Yu BAI, Zhiqiang HOU, Xiaoyi LIU et al. Target detection algorithm based on decision-level fusion of visible light image and infrared image. Journal of Air Force Engineering University (Natural Science Edition), 21, 53-59(2020).

    [30] L YANG, R Y ZHANG, L LI. Simam: a simple, parameter-free attention module for convolutional neural networks, 11863-11874(2021).

    [31] Q HOU, D ZHOU, J FENG. Coordinate attention for efficient mobile network design, 13713-13722(2021).

    [32] J MA, Z ZHAO, X YI et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts, 1930-1939(2018).

    [33] S HWANG, J PARK, N KIM et al. Multispectral pedestrian detection: Benchmark dataset and baseline, 1037-1045(2015).

    [34] C LI, D SONG, R TONG. Multispectral pedestrian detection via simultaneous detection and segmentation. arXiv preprint(2018).

    [35] J LIU, S ZHANG, S WANG et al. Multispectral deep neural networks for pedestrian detection. arXiv preprint(2016).

    [36] C LI, N ZHAO, Y LU. Weighted sparse representation regularized graph learning for RGB-T object tracking, 1856-1864(2017).

    [37] Y SUN, B CAO, P ZHU et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning(2021).

    [38] Q WANG, Y CHI, T SHEN et al. Improving RGB-infrared object detection by reducing cross-modality redundancy. Remote Sensing, 14, 2020-2031(2022).

    Ying SUN, Zhiqiang HOU, Chen YANG, Sugang MA, Jiulun FAN. Object Detection Algorithm Based on Dual-modal Fusion Network[J]. Acta Photonica Sinica, 2023, 52(1): 0110002
    Download Citation