• Optoelectronics Letters
  • Vol. 20, Issue 9, 513 (2024)
Chengzhi LI1, Yang YANG1, Lijun LIU1, Fei GAO1..., Xuan DU1 and Hu and LIANG2,*|Show fewer author(s)
Author Affiliations
  • 1Kunlun Digital Technology Co., Ltd., Beijing 102206, China
  • 2Tianjin Navigation Instruments Research Institute, Tianjin 300131, China
  • show less
    DOI: 10.1007/s11801-024-3208-0 Cite this Article
    LI Chengzhi, YANG Yang, LIU Lijun, GAO Fei, DU Xuan, and LIANG Hu. Method of extracting disturbed position in φ-OTDR based on signal relevance evaluation[J]. Optoelectronics Letters, 2024, 20(9): 513 Copy Citation Text show less
    References

    [1] WANG X, ZHANG A L, LIANG S, et al. Event identification of a phase-sensitive OTDR sensing system based on principal component analysis and probabilistic neural network[J]. Infrared physics & technology, 2021, 114(1): 103630-103630.

    [2] YAN A, WAN L, WU M. Event identification for phase-sensitive OTDR based on boosting ensemble learning[C]//2021 IEEE Region 10 Symposium (TENSYMP), August 23-25, 2021, Jeju, South Korea. New York: IEEE, 2021: 1-5.

    [3] LI Y H, ZENG X, SHI Y. Quickly build a high-precision classifier for φ-OTDR sensing system based on transfer learning and support vector machine[J].Optical fiber technology, 2022, 70: 1-7.

    [4] LIU M X, WANG X, LIANG S, et al. Single and composite disturbance event recognition based on the DBN-GRU network in φ-OTDR[J]. Applied optics, 2023, 62(1): 133-141.

    [5] ZHANG S. An intrusion events recognition method by incremental learning assisted with fiber optic DAS system[C]//2022 Conference on Lasers and Electro-Optics (CLEO), May 15-20, 2022, San Jose, CA, USA. New York: IEEE, 2022: 1-2.

    [6] YAN S, SHANG Y, WANG C, et al. Mixed intrusion events recognition based on group convolutional neural networks in das system[J]. IEEE sensors journal, 2022, 22(1): 678-684.

    [7] ZHANG Y K, SHANG Y, WANG C, et al. Detection and recognition of distributed optical fiber intrusion signal[J]. Optoelectronics engineering, 2021, 48(3): 200254. (in Chinese)

    [8] YANG Z G, DONG H M, ZHANG F X, et al. Distributed optical fiber sensing event recognition based on Markov transition field and knowledge distillation[J]. IEEE access, 2023, 11: 19362-19372.

    [9] YAO R X, LI J, ZHANG J R, et al. Vibration event recognition using SST-based φ-OTDR system[J]. Sensors,2023: 23.8773.

    [10] HU X, QIU G J, KARIMI H, et al. TFF-CNN: distributed optical fiber sensing intrusion detection framework based on two-dimensional multi-features[J]. Neurocomputing,2023, 564: 126959.

    [11] DU X, JIA M X, HUANG S, et al, Event identification based on sample feature correction algorithm for φ-OTDR[J]. Measurement science and technology, 2023, 34(8).

    [12] X W J, YU F H, LIU S Q, et al. Real-time multi-class disturbance detection for φ-OTDR based on YOLO algorithm[J].Sensors, 2022, 22(5): 1994.

    [13] WANG Z Y, LU B, YE Q, et al. Recent progress in distributed fiber acoustic sensing with φ-OTDR[J]. Sensors,2020, 20(22): 6594.

    [14] SHI Y, DAI S W, JIANG T, et al. A recognition method for multi-radial-distance event of φ-OTDR system based on CNN[C]//IEEE access, 2021, 9: 143473-143480.

    [15] SHA Z. Research on long range phase sensitive time domain reflection distributed disturbance detection system[D].Tianjin: Tianjin University, 2020. (in Chinese)

    LI Chengzhi, YANG Yang, LIU Lijun, GAO Fei, DU Xuan, and LIANG Hu. Method of extracting disturbed position in φ-OTDR based on signal relevance evaluation[J]. Optoelectronics Letters, 2024, 20(9): 513
    Download Citation