• Optics and Precision Engineering
  • Vol. 27, Issue 11, 2365 (2019)
YANG Ye-feng1,*, DENG Kai2, ZUO Ying-qi1, BAN Xiao-jun1, and HUANG Xian-lin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20192711.2365 Cite this Article
    YANG Ye-feng, DENG Kai, ZUO Ying-qi, BAN Xiao-jun, HUANG Xian-lin. Parameter design and optimization of a flight attitude simulator system based on PILCO framework[J]. Optics and Precision Engineering, 2019, 27(11): 2365 Copy Citation Text show less

    Abstract

    Proportional-integral-derivative (PID) controllers are widely used in flight control systems. However, it is often very cumbersome to adjust the parameters of a PID controller. In this study, we use Probabilistic Inference for Learning Control (PILCO) to optimize the parameters of a PID controller. As the first step, we develop a probabilistic dynamics model of the flight control system using input and output data. Next, the existing PID controller is evaluated using the policy evaluation method. Finally, the evaluated PID controller is optimized by policy update. The sampling frequency of the system is 100 Hz and the data acquisition time per round is 8 s. The optimized PID controller can achieve stable control post 10 rounds of offline training. Through PILCO optimization, the flight attitude simulator performed robustly in a fixed-point experiment, indicating that PILCO has tremendous potential in solving nonlinear control and parameter optimization problems.
    YANG Ye-feng, DENG Kai, ZUO Ying-qi, BAN Xiao-jun, HUANG Xian-lin. Parameter design and optimization of a flight attitude simulator system based on PILCO framework[J]. Optics and Precision Engineering, 2019, 27(11): 2365
    Download Citation