• Frontiers of Optoelectronics
  • Vol. 11, Issue 2, 189 (2018)
Lauro J.1、2、*, Jyothis THOMAS3, Yannick LEDEMI4, Kummara V.3, Denis SELETSKIY3, Younes MESSADDEQ4, and Raman KASHYAP2、3
Author Affiliations
  • 1Instituto de Fisica, Universidade Federal de Goias, Av. Esperanca 1533, Campus Samambaia, Goiania, GO, 74690-900, Brazil
  • 2Department of Electrical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal, QC, H3C 3A7, Canada
  • 3Department of Engineering Physics, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal, QC, H3C 3A7, Canada
  • 4Centre d'Optique, Photonique et Laser, 2375 Rue de la Terrasse, Universite Laval, Quebec, QC, G1V 0A6, Canada
  • show less
    DOI: 10.1007/s12200-018-0815-z Cite this Article
    Lauro J., Jyothis THOMAS, Yannick LEDEMI, Kummara V., Denis SELETSKIY, Younes MESSADDEQ, Raman KASHYAP. Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications[J]. Frontiers of Optoelectronics, 2018, 11(2): 189 Copy Citation Text show less
    References

    [1] Pringsheim P. Zwei bemerkungen uber den unterschied von lumineszenz-undtemperaturstrahlung. Zecischrift fur Phisik, 1929, 57(11–12): 739–746

    [2] Kastler A. Quelques suggestions concernant la production optique et la detection optique d’une inegalite de population des niveaux de quantifigation spatiale des atomes - application à l’experience de Stern et Gerlach et à la resonance magnetique. Journal de Physique et le Radium, 1950, 11(6): 255–265

    [3] Yatsiv S. Anti-Stokes fluorescence as a Cooling Process. In: Singer J R, ed. Advances in Quantum Electronics. New York: Columbia University, 1961

    [4] Epstein R I, Buchwald M I, Edwards B C, Gosnell T R, Mungan C E. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377(6549): 500–503

    [5] Sheik-Bahae M, Epstein R I. Optical refrigeration. Nature Photonics, 2007, 1(12): 693–699

    [6] Epstein R I, Sheik-Bahae M. Optical Refrigeration: Science and Applications of Laser Cooling of Solids.Weinheim: Wiley-VCH, 2009

    [7] Sheik-Bahae M, Epstein R I. Can laser light cool semiconductors? Physical Review Letters, 2004, 92(24): 247403

    [8] Finkeiben E, Potemski M,Wyder P, Vina L,Weimann G. Cooling of a semiconductor by luminescence up-conversion. Applied Physics Letters, 1999, 75(9): 1258–1260

    [9] De Lima Filho E S, Gagne M, Nemova G, Saad M, Bowman S R, Kashyap R. Sensing of laser cooling with optical fibres. In: Proceedings of 7th International Workshop on Fibre Optics and Passive Components. Montreal, QC, Canada: IEEE, 2011, 1–7

    [10] De Lima Filho E S, Nemova G, Loranger S, Kashyap R. Laserinduced cooling of a Yb:YAG crystal in air at atmospheric pressure. Optics Express, 2013, 21(21): 24711–24720

    [11] De Lima Filho E S, Nemova G, Loranger S, Kashyap R. Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber bragg grating. In: Proceedings of SPIE Laser Refrigeration of Solids VII. San Francisco, California, USA: SPIE, 2014, 90000I

    [12] Nemova G, Kashyap R. Optimization of optical refrigaration in Yb3+:YAG samples. Journal of Luminescence, 2015, 164: 99–104

    [13] Nemova G, De Lima Filho E S, Loranger S, Kashyap R. Laser cooling with nanoparticles. In: Proceedings of Photonics North. Montreal, Canada: SPIE, 2012, 84121P

    [14] Nemova G, Kashyap R. Laser cooling with Tm3+-doped oxyfluoride glass ceramic. Journal of the Optical Society of America B, Optical Physics, 2012, 29(11): 3034–3038

    [15] Filho E S, Krishnaiah K V, Ledemi Y, Yu Y J, Messaddeq Y, Nemova G, Kashyap R. Ytterbium-doped glass-ceramics for optical refrigeration. Optics Express, 2015, 23(4): 4630–4640

    [16] Krishnaiah K V, Ledemi Y, De Lima Filho E S, Messaddeq Y, Kashyap R. Nanocrystallization in Yb3+-doped oxyfluoride glasses for laser cooling. In: Proceedings of SPIE Laser Refrigeration of Solids VIII.San Francisco, California, USA: SPIE, 2015, 93800P

    [17] Krishnaiah K V, Ledemi Y, De Lima Filho E S, Loranger S, Nemova G, Messaddeq Y, Kashyap R. Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling. In: Proceedings of SPIE Optical and Electronic Cooling of Solids. San Francisco, California, USA: SPIE, 2016, 97650L

    [18] Krishnaiah K V, De Lima Filho E S, Ledemi Y, Nemova G, Messaddeq Y, Kashyap R. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications. Scientific Reports, 2016, 6(1): 21905

    [19] Krishnaiah K V, Ledemi Y, Genevois C, Veron E, Sauvage X, Morency S, De Lima Filho E S, Nemova G, Allix M, Messaddeq Y, Kashyap R. Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling. Optical Materials Express, 2017, 7(6): 1980–1994

    [20] Maia L J Q, Thomas J, Krishnaiah K V, Ledemi Y, Seletskiy D, Messaddeq Y, Kashyap R. Structural and optical characterizations of Yb3+ doped GeO2-PbF2-PbO glass-ceramics for optical refrigeration. In: Proceedings of SPIE Optical and Electronic Cooling of Solids III . San Francisco, California, USA: SPIE, 2018, 105500O

    [21] Dantelle G, Mortier M, Patriarche G, Vivien D. Er3+-doped PbF2: comparison between nanocrystals in glass-ceramics and bulk single crystals. Journal of Solid State Chemistry, 2006, 179(7): 1995–2003

    [22] Bohren C F, Huffman D F. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983

    [23] Fujita S, Sakamoto A, Tanabe S. Luminescence characteristics of YAG glass–ceramic phosphor for white LED. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5): 1387–1391

    [24] Wrighton M S, Ginley D S, Morse D L. A technique for the determination of absolute emission quantum yields of powdered samples. Journal of Physical Chemistry, 1974, 78(22): 2229–2233

    [25] Guimaraes V F, Maia L J Q, Gautier-Luneau I, Bouchard C, Hernandes A C, Thomas F, Ferrier A, Viana B, Ibanez A. Toward a new generation of white phosphors for solid state lighting using glassy yttrium aluminoborates. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(22): 5795–5802

    [26] Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Optics Letters, 1994, 19(17): 1343–1345

    [27] Dai S, Yang J, Wen L, Hu L, Jiang Z. Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses. Journal of Luminescence, 2003, 104(1-2): 55–63

    [28] Righini G C, Ferrari M. Photoluminescence of rare-earth-doped glasses. Rivista del Nuovo Cimento, 2005, 28: 1–53

    [29] Bueno L A, Gouveia-Neto A S, da Costa E B, Messaddeq Y, Ribeiro S J L. Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe. Journal of Physics Condensed Matter, 2008, 20(14): 145201

    [30] Pan Z, Ueda A, Mu R, Morgan S H. Upconversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics. Journal of Luminescence, 2007, 126(1): 251–256

    Lauro J., Jyothis THOMAS, Yannick LEDEMI, Kummara V., Denis SELETSKIY, Younes MESSADDEQ, Raman KASHYAP. Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications[J]. Frontiers of Optoelectronics, 2018, 11(2): 189
    Download Citation