• Chinese Journal of Lasers
  • Vol. 50, Issue 6, 0612001 (2023)
Baocheng Hou and Huajun Chen*
Author Affiliations
  • School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, Anhui , China
  • show less
    DOI: 10.3788/CJL220630 Cite this Article Set citation alerts
    Baocheng Hou, Huajun Chen. Coherent Optical Transmission in Magneto-Optomechanical Systems Enhanced by Auxiliary Cavity[J]. Chinese Journal of Lasers, 2023, 50(6): 0612001 Copy Citation Text show less
    References

    [1] Agarwal G S, Huang S M. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes[J]. New Journal of Physics, 16, 033023(2014).

    [2] Hou B C, Chen H J. Coherent optical transmission characteristics based on magneto-optical force system[J]. Acta Optica Sinica, 41, 2127001(2021).

    [3] Chen H J. Multiple-Fano-resonance-induced fast and slow light in the hybrid nanomechanical-resonator system[J]. Physical Review A, 104, 013708(2021).

    [4] Yu F, Xiao T, He G Q et al. Probe absorption properties of a superconducting qubit coupled to microwave cavity and mechanical resonator[J]. Laser & Optoelectronics Progress, 59, 0327001(2022).

    [5] Zhang T C, Wu W, Yang P F et al. High-finesse micro-optical Fabry-Perot cavity and its applications in strongly coupled cavity quantum electrodynamics[J]. Acta Optica Sinica, 41, 0127001(2021).

    [6] Balram K C, Davanço M I, Song J D et al. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits[J]. Nature Photonics, 10, 346-352(2016).

    [7] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391-1452(2014).

    [8] Li G, Zhang P F, Yang P F et al. Experimental progress of strongly coupling between optical cavity and atoms[J]. Acta Optica Sinica, 42, 0327005(2022).

    [9] Fiore V, Yang Y, Kuzyk M C et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator[J]. Physical Review Letters, 107, 133601(2011).

    [10] Zhou X, Hocke F, Schliesser A et al. Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics[J]. Nature Physics, 9, 179-184(2013).

    [11] Safavi-Naeini A H, Alegre T P M, Chan J et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 472, 69-73(2011).

    [12] Weis S, Rivière R, Deléglise S et al. Optomechanically induced transparency[J]. Science, 330, 1520-1523(2010).

    [13] Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light[J]. Physical Review A, 81, 041803(2010).

    [14] Chen H J. High-resolution biomolecules mass sensing based on a spinning optomechanical system with phonon pump[J]. Applied Physics Express, 14, 082005(2021).

    [15] Kleckner D, Bouwmeester D. Sub-kelvin optical cooling of a micromechanical resonator[J]. Nature, 444, 75-78(2006).

    [16] Li J, Zhu S Y, Agarwal G S. Magnon-photon-phonon entanglement in cavity magnomechanics[J]. Physical Review Letters, 121, 203601(2018).

    [17] Zhang X F, Zou C L, Jiang L et al. Cavity magnomechanics[J]. Science Advances, 2, e1501286(2016).

    [18] Li J, Zhu S Y, Agarwal G S. Squeezed states of magnons and phonons in cavity magnomechanics[J]. Physical Review A, 99, 021801(2019).

    [19] Liu Z X, Wang B, Kong C et al. Magnetic-field-dependent slow light in strontium atom-cavity system[J]. Applied Physics Letters, 112, 111109(2018).

    [20] Zhang G Q, You J Q. Higher-order exceptional point in a cavity magnonics system[J]. Physical Review B, 99, 054404(2019).

    [21] Zhang X F, Zou C L, Zhu N et al. Magnon dark modes and gradient memory[J]. Nature Communications, 6, 8914(2015).

    [22] Zhang D K, Luo X Q, Wang Y P et al. Observation of the exceptional point in cavity magnon-polaritons[J]. Nature Communications, 8, 1368(2017).

    [23] Wang Y P, Zhang G Q, Zhang D K et al. Bistability of cavity magnon polaritons[J]. Physical Review Letters, 120, 057202(2018).

    [24] Chen H J. Controllable fast and slow light in the hybrid quantum dot-nanomechanical resonator system mediated by another nanomechanical resonator with Coulomb interaction[J]. Journal of Applied Physics, 130, 204302(2021).

    [25] Li W L, Li C, Song H S. Quantum synchronization in an optomechanical system based on Lyapunov control[J]. Physical Review E, 93, 062221(2016).

    [26] Andrews R W, Peterson R W, Purdy T P et al. Bidirectional and efficient conversion between microwave and optical light[J]. Nature Physics, 10, 321-326(2014).

    [27] Fan L R, Fong K Y, Poot M et al. Cascaded optical transparency in multimode-cavity optomechanical systems[J]. Nature Communications, 6, 5850(2015).

    [28] Kittel C. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals[J]. Physical Review, 110, 836-841(1958).

    [29] Tabuchi Y, Ishino S, Noguchi A et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit[J]. Science, 349, 405-408(2015).

    [30] Sinha K P, Upadhyaya U N. Phonon-magnon interaction in magnetic crystals[J]. Physical Review, 127, 432-439(1962).

    [31] Liu Z X, Wang B, Xiong H et al. Magnon-induced high-order sideband generation[J]. Optics Letters, 43, 3698-3701(2018).

    [32] Wang Y P, Zhang G Q, Zhang D K et al. Magnon Kerr effect in a strongly coupled cavity-magnon system[J]. Physical Review B, 94, 224410(2016).

    [33] Wang B, Liu Z X, Kong C et al. Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system[J]. Optics Express, 26, 20248-20257(2018).

    [34] Kong C, Xiong H, Wu Y. Magnon-induced nonreciprocity based on the magnon Kerr effect[J]. Physical Review Applied, 12, 034001(2019).

    [35] Qin F, Liu Y, Meng Z M et al. Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching[J]. Journal of Applied Physics, 108, 053108(2010).

    [36] Yang S, Al-Amri M, Evers J et al. Controllable optical switch using a Bose-Einstein condensate in an optical cavity[J]. Physical Review A, 83, 053821(2011).

    [37] Yan X B, Cui C L, Gu K H et al. Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system[J]. Optics Express, 22, 4886-4895(2014).

    [38] Du L, Liu Y M, Zhang Y et al. All-optical photon transmission switching in a passive-active optomechanical system[EB/OL]. https:∥ arxiv.org/abs/1801.02296

    [39] Chen H J, Hou B C, Yang J Y. Controllable coherent optical response in a ring cavity optomechanical system[J]. Physica E: Low-Dimensional Systems and Nanostructures, 125, 114394(2021).

    [40] Du L, Liu Y M, Jiang B et al. All-optical photon switching, router and amplifier using a passive-active optomechanical system[J]. EPL (Europhysics Letters), 122, 24001(2018).

    Baocheng Hou, Huajun Chen. Coherent Optical Transmission in Magneto-Optomechanical Systems Enhanced by Auxiliary Cavity[J]. Chinese Journal of Lasers, 2023, 50(6): 0612001
    Download Citation