• Photonics Research
  • Vol. 1, Issue 1, 16 (2013)
Yang Li and Kadi Zhu*
Author Affiliations
  • Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.1.000016 Cite this Article Set citation alerts
    Yang Li, Kadi Zhu. High-order sideband optical properties of a DNA–quantum dot hybrid system [Invited][J]. Photonics Research, 2013, 1(1): 16 Copy Citation Text show less
    References

    [1] E. L. Falcao-Filho, B. de Araujo, J. J. Rodrigues. High-order nonlinearities of aqueous colloids containing silver nanoparticles. J. Opt. Soc. Am. B, 24, 2948-2956(2007).

    [2] D. Rativa, R. E. de Araujo, A. S. L. Gomes. Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution. Opt. Express, 16, 19244-19252(2008).

    [3] R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda. Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles. J. Appl. Phys., 103, 063102(2008).

    [4] Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, Q. X. Guo. Determination of the third- and fifth-order nonlinear refractive indices in InN thin films. Appl. Phys. Lett., 91, 221902(2007).

    [5] F. Smektala, C. Quemard, V. Couderc, A. Barthelemy. Non-linear optical properties of chalcogenide glasses measured by Z-scan. J. Non-Cryst. Solids, 274, 232-237(2000).

    [6] B. Gu, W. Ji, X. Q. Huang, P. S. Patil, S. M. Dharmaprakash. Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities. Opt. Express, 17, 1126-1135(2009).

    [7] R. A. Ganeev, A. I. Ryasnyanskii, R. I. Tugushev. Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals. Opt. Spectrosc., 96, 526-531(2004).

    [8] E. Koudoumas, F. Dong, S. Couris, S. Leach. High order nonlinear optical response of fullerene solutions in the nanosecond regime. Opt. Commun., 138, 301-304(1997).

    [9] E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, S. Leach. High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime. J. Phys. B, 29, L773-L778(1996).

    [10] R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, H. Kuroda. Low- and high-order nonlinear optical characterization of C60-containing media. Eur. Phys. J. D, 64, 109-114(2011).

    [11] S. T. Birendra, S. N. Serdar, G. G. James. Bio-organic optoelectronic devices using DNA. Adv. Polym. Sci., 223, 189-212(2010).

    [12] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, A. J. Steckl. Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine. Appl. Opt., 46, 1507-1513(2007).

    [13] M. Samoc, A. Samoc, J. G. Grote. Complex nonlinear refractive index of DNA. Chem. Phys. Lett., 431, 132-134(2006).

    [14] O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, F. Kajzar. NLO properties of functionalized DNA thin films. Thin Solid Films, 516, 8932-8936(2008).

    [15] C. Y. Zhang, H. C. Yeh, M. T. Kuroki, T. H. Wang. Single-quantum-dot-based DNA nanosensor. Nat. Mater., 4, 826-831(2005).

    [16] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kipperberg. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [17] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds. Circuit cavity electromechanics in the strong-coupling regime. Nature, 471, 204-208(2011).

    [18] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).

    [19] J. J. Li, K. D. Zhu. A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system. Appl. Phys. Lett., 94, 063116(2009).

    [20] W. He, J. J. Li, K. D. Zhu. Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems. Opt. Lett., 35, 339-341(2010).

    [21] N. Amdursky, M. Molotskii, E. Gazit, G. Rosenman. Self-assembled bioinspired quantum dots: optical properties. Appl. Phys. Lett., 94, 261907(2009).

    [22] N. Amdursky, M. Molotskii, E. Gazit, G. Rosenman. Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc., 132, 15632-15636(2010).

    [23] J. J. Li, K. D. Zhu. Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system. Nano. Res. Lett., 7, 1-7(2012).

    [24] C. M. Donega, M. Bode, A. Meijerink. Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B, 74, 085320(2006).

    [25] C. W. Gardiner, P. Zoller. Quantum Noise(2000).

    [26] D. F. Walls, G. J. Milburn. Quantum Optics(1994).

    [27] H. Carmichael. Statistical Methods in Quantum Optics(1999).

    [28] H. P. Breuer, F. Petruccione. The Theory of Open Quantum Systems(2002).

    [29] C. W. Gardiner, P. Zoller. Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate. Phy. Rev. A, 61, 033601(2000).

    [30] G. J. Milburn, K. Jacobs, D. F. Walls. Quantum-limited measurements with the atomic force microscope. Phy. Rev. A, 50, 5256-5263(1994).

    [31] B. H. Dorfman. The effects of viscous water on the normal mode vibrations of DNA. Dissert. Abstr. Int., 45, 2213(1984).

    [32] B. H. Dorfman, L. L. Zandt. Vibration of DNA polymer in viscous solvent. Biopolymers, 22, 2639-2665(1983).

    [33] V. Giovannetti, D. Vitali. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phy. Rev. A, 63, 023812(2001).

    [34] H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, Y. Wu. Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A, 86, 013815(2012).

    [35] J. F. Marko, E. D. Siggia. Stretching DNA. Macromolecules, 28, 8759-8770(1995).

    [36] G. S. Edwards, C. C. Davis, J. D. Saffer, M. L. Swicord. Microwave-field-driven acoustic modes in DNA. Biophys. J., 47, 799-807(1985).

    [37] C. L. Yuan, H. M. Chen, X. W. Lou, L. A. Archer. DNA bending stiffness on small length scales. Phys. Rev. Lett., 100, 018102(2008).

    [38] R. Gill, I. Willner, I. Shweky, U. Banin. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. J. Phys. Chem. B, 109, 23715-23719(2005).

    [39] B. K. Adai. Vibrational resonances in biological systems at microwave. Biophys. J., 82, 1147-1152(2002).

    [40] M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, S. Weiss. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J. Am. Chem. Soc., 129, 6865-6871(2007).

    [41] Y. H. Chen, L. Wang, W. Jiang. Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA. Talanta, 97, 533-538(2012).

    Yang Li, Kadi Zhu. High-order sideband optical properties of a DNA–quantum dot hybrid system [Invited][J]. Photonics Research, 2013, 1(1): 16
    Download Citation