• Optical Technique
  • Vol. 51, Issue 3, 367 (2025)
WANG Yuexin and XU Dan*
Author Affiliations
  • School of Information Science and Engineering, Yunnan University, Kunming 650504, Chian
  • show less
    DOI: Cite this Article
    WANG Yuexin, XU Dan. SpectraFuse GAT and bipolar self-attention fusion network for hyperspectral image classification[J]. Optical Technique, 2025, 51(3): 367 Copy Citation Text show less
    References

    [1] Landgrebe, D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine,2002,19(1):17—28.

    [2] Sabbah S, Harig R, Rusch P, et al. Remote sensing of gases by hyperspectral imaging: System performance and measurements[J]. Optical Engineering,2012,51(11):111717.

    [3] Krupnik D, Khan S. Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies[J]. Earth-Science Reviews,2019,198:102952.

    [4] Fan J, Zhou N, Peng J, et al. Hierarchical learning of tree classifiers for large-scale plant species identification[J]. IEEE Transactions on Image Processing,2015,24(11):4172—4184.

    [5] Shimoni M, Haelterman R, Perneel C. Hyperspectral imaging for military and security applications: Combining myriad processing and sensing techniques[J]. IEEE Geoscience and Remote Sensing Magazine,2019,7(2):101—117.

    [6] Zhang L, Zhang L, Du B. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine,2016,4(2):22—40.

    [7] Boulila W, Sellami M, Driss M, et al. Ghaleb F A. RS-DCNN: A novel distributed convolutional neural networks-based approach for big remote sensing image classification[J]. Computers and Electronics in Agriculture,2021,182:106014.

    [8] Paoletti M E, Haut J M, Fernandez-Beltran R, et al. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2018,57(2):740—754.

    [9] Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors,2015,2015:1—12.

    [10] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)/[2024-09-24]. https:∥arxiv.org/abs/1609.02907

    [11] Qin A, Shang Z, Tian J, et al. Spectral-spatial graph convolutional networks for semi-supervised hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters,2018,16(2):241—245.

    [12] Wan S, Gong C, Zhong P, et al. Hyperspectral image classification with context-aware dynamic graph convolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,59(1):597—612.

    [13] Hong D, Gao L, Yao J, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,59(7):5966—5978.

    [14] Liu Q, Xiao L, Yang J, et al. CNN-enhanced graph convolutional network with pixel- and superpixel-level feature fusion for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,59(10):8657—8671.

    [15] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274—2282.

    [16] Dong Y, Liu Q, Du B, et al. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification[J]. IEEE Transactions on Image Processing,2022,31:1559—1572.

    [17] Xanthopoulos P, Pardalos P M, Trafalis T B. Linear discriminant analysis[A]. Robust Data Mining,2013:27—33.

    [18] Jampani V, Sun D, Liu M-Y, et al. Superpixel sampling networks[C]∥Proceedings of the European Conference on Computer Vision(ECCV). Munich, Germany:Springer,2018:352—368.

    [19] He N, Fang L, Plaza A. Hybrid first and second order attention U-Net for building segmentation in remote sensing images[J]. Science China Information Sciences,2020,63:1—12.

    [20] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentationCCC∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA:IEEE,2019:3146—3154

    [21] Chen L-C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834—848.

    [22] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE,2019:5693—5703.

    [23] Woo S, Park J, Lee J-Y, et al. CBAM: Convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision(ECCV). Munich,Germany:Springer,2018:3—19.

    [24] Chen Y, Jiang H, Li C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(10):6232—6251.

    [25] Wang Z, Du B, Guo Y. Domain adaptation with neural embedding matching[J]. IEEE Transactions on Neural Networks and Learning Systems,2019,31(7):2387—2397.

    [26] Qu L, Zhu X, Zheng J, et al. Triple-attention-based parallel network for hyperspectral image classification[J]. Remote Sensing,2021,13(2):324.

    [27] Zhong Z, Li J, Luo Z, Chapman M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,56(2):847—858.

    [28] Roy S K, Manna S, Song T, et al. Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,59(9):7831—7843.

    [29] Zhou Y, Huang X, Yang X, et al. DCTN: Dual-branch convolutional transformer network with efficient interactive self-attention for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62(5):1234—1245.

    WANG Yuexin, XU Dan. SpectraFuse GAT and bipolar self-attention fusion network for hyperspectral image classification[J]. Optical Technique, 2025, 51(3): 367
    Download Citation