• Frontiers of Optoelectronics
  • Vol. 14, Issue 2, 211 (2021)
Zhilu YE, Minye YANG, Liang ZHU, and Pai-Yen CHEN*
Author Affiliations
  • Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
  • show less
    DOI: 10.1007/s12200-021-1204-6 Cite this Article
    Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN. PTX-symmetric metasurfaces for sensing applications[J]. Frontiers of Optoelectronics, 2021, 14(2): 211 Copy Citation Text show less
    References

    [1] Rodriguez S, Ollmar S, Waqar M, Rusu A. A batteryless sensor ASIC for implantable bio-impedance applications. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(3): 533–544

    [2] Yvanoff M, Venkataraman J. A feasibility study of tissue characterization using LC sensors. IEEE Transactions on Antennas and Propagation, 2009, 57(4): 885–893

    [3] Tan Q, Luo T, Xiong J, Kang H, Ji X, Zhang Y, Yang M, Wang X, Xue C, Liu J, Zhang W. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology. Sensors (Basel, Switzerland), 2014, 14(3): 4154–4166

    [4] Huang H, Chen P Y, Hung C H, Gharpurey R, Akinwande D. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring. Scientific Reports, 2016, 6(1): 18795

    [5] Chen L Y, Tee B C K, Chortos A L, Schwartz G, Tse V, Lipomi D J, Wong H S, McConnell M V, Bao Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Communications, 2014, 5(1): 5028

    [6] Chen P, Rodger D C, Saati S, HumayunMS, Tai Y. Microfabricated implantable parylene-based wireless passive intraocular pressure sensors. Journal of Microelectromechanical Systems, 2008, 17(6): 1342–1351

    [7] Chen P, Saati S, Varma R, Humayun M S, Tai Y. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. Journal of Microelec- tromechanical Systems, 2010, 19(4): 721–734

    [8] Nopper R, Niekrawietz R, Reindl L.Wireless readout of passive LC sensors. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2450–2457

    [9] opez-Higuera J M, Cobo L R, Incera A Q, Cobo A. Fiber optic sensors in structural health monitoring. Journal of Lightwave Technology, 2011, 29(4): 587–608

    [10] Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y. Interferometric fiber optic sensors. Sensors (Basel, Switzerland), 2012, 12(3): 2467–2486

    [11] Liao L, Lu H B, Li J C, Liu C, Fu D J, Liu Y L. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Applied Physics Letters, 2007, 91: 173110

    [12] Wanekaya A K, Chen W, Myung N V, Mulchandani A. Nanowirebased electrochemical biosensors. Electroanalysis, 2006, 18(6): 533–550

    [13] Zhu G, YangWQ, Zhang T, Jing Q, Chen J, Zhou Y S, Bai P,Wang Z L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 2014, 14(6): 3208–3213

    [14] Xiao Z, Li H, Kottos T, Alù A. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Physical Review Letters, 2019, 123(21): 213901

    [15] Chen P Y, El-Ganainy R. Exceptional points enhance wireless readout. Nature Electronics, 2019, 2(8): 323–324

    [16] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666): 187–191

    [17] Chen P Y, Sakhdari M, Hajizadegan M, Cui Q, Cheng M M C, El- Ganainy R, Alù A. Generalized parity–time symmetry condition for enhanced sensor telemetry. Nature Electronics, 2018, 1(5): 297–304

    [18] Dong Z, Li Z, Yang F, Qiu C W, Ho J S. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2019, 2(8): 335–342

    [19] Sakhdari M, Estakhri N M, Bagci H, Chen P Y. Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures. Physical Review Applied, 2018, 10(2): 024030

    [20] Farhat M, Yang M, Ye Z, Chen P Y. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity. ACS Photonics, 2020, 7(8): 2080–2088

    [21] Yang M, Ye Z, Farhat M, Chen P Y. Enhanced radio-frequency sensors based on a self-dual emitter-absorber. Physical Review Applied, 2021, 15(1): 014026

    [22] Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters, 1998, 80(24): 5243–5246

    [23] Sakhdari M, Hajizadegan M, Zhong Q, Christodoulides D N, El- Ganainy R, Chen P Y. Experimental observation of PT symmetry breaking near divergent exceptional points. Physical Review Letters, 2019, 123(19): 193901

    [24] Chen W, Kaya ?zdemir ?, Zhao G, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548 (7666): 192–196 PMID:28796206

    [25] Longhi S. PT-symmetric laser absorber. Physical Review A, 2010, 82(3): 031801

    [26] Ye Z, Farhat M, Chen P Y. Tunability and switching of Fano and Lorentz resonances in PTX-symmetric electronic systems. Applied Physics Letters, 2020, 117(3): 031101

    [27] Chen P Y, Jung J. PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces. Physical Review Applied, 2016, 5(6): 064018

    [28] Sakhdari M, Farhat M, Chen P Y. PT-symmetric metasurfaces: wave manipulation and sensing using singular points. New Journal of Physics, 2017, 19(6): 065002

    Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN. PTX-symmetric metasurfaces for sensing applications[J]. Frontiers of Optoelectronics, 2021, 14(2): 211
    Download Citation