• Infrared Technology
  • Vol. 44, Issue 12, 1249 (2022)
Xiaofeng LI1、2, Yanbin HE1, Chuanping XU1, Jinsha LI1, and Qindong ZHANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong. Choice of European Super Second Generation Image Intensifier Technology and its Further Development[J]. Infrared Technology, 2022, 44(12): 1249 Copy Citation Text show less
    References

    [6] Laprade B N, Reinhart S T, Wheeler M, et al. Low-noise-figure microchannel plate optimized for Gen III image intensification systems[C/OL]//SPIE of Electron Image Tubes and Image Intensifiers, 1990, 1243: https://doi.org/10.1117/12.19476. http://opticsjournal.net/Articles/abstract?aid=OJ131023000121qWtv3y

    [7] Feller W B. Low noise and conductively cooled microchannel plates[C]//Proc. of SPIE Electron Image Tubes and Image Intensifiers, 1990, 1243: doi: 10.1117/12.19475.

    [8] Conti L, Barnstedt J, Hanke L, et al. MCP Detector Development for UV Space Missions[J]. Astrophysics and Space Science, 2018, 363(4): 63-71.

    [18] ZHANG Yijun, CHANG Benkang, YANG Zhi, et al. Distributuion of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy[J]. Chinese Physics B, 2009, 18(10): 4541-4546.

    [19] ZHAO Jing, CHANG Benkang, XIONG Yajuan, et al. Influence of the antireflection, window and active layers on optical properties of exponential-doping transmission-mode GaAs photocade modules[J]. Optics Communications, 2012, 285(5): 589-593.

    [22] Jan Van Spijker. Ion barrier membrane for use in a vacuum tube using electron multiplying, an electron multiplying structure for use in a vacuum tube using electron multiplying as well as a vacuum tube using electron multiplying provided with such an electron multiplying structure[P]. U.S.: 8,471,444B2[P]. [2013-01-25].

    [23] Roaux E, Richard J C, Piaget C. Third-Generation Image Intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 71-75.

    [24] Pollehn H K. Performance and reliability of third-generation image intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 61-69.

    [25] Jacques Dupuy, Joost Schrijvers, Gerard Wolzak. The super second generation image intensifier[C/OL]//SPIE, 1989, 1072:0014.

    [26] Bosch L A, Boskma L. The Performance of DEP Super Generation Image Intensifier[C]//Proc. of SPIE, 1994, 2272:110212.

    [27] YAN Baojin, LIU Shulin, HENG Yuekun. Nano-oxide thin films deposited via atomic layer deposition on microchannel[J]. Nanoscale Research Letters, 2015, 10(1): 1-10.

    [29] Nutzel G. Image intensifier for night vision device[P]. U.S.: Patent 0,886,095B2, [2021-01-05].

    [40] Hoenderken T H, Hagen C W, Nutzel G O, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vaccum, Science and Technology, 2001, 19(30): 843-850.

    [41] Nutzel G. Fiber optic phosphor screen comprising angular filter[P]. U.S.: 8,933,419B2 [2015-01-13].

    LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong. Choice of European Super Second Generation Image Intensifier Technology and its Further Development[J]. Infrared Technology, 2022, 44(12): 1249
    Download Citation