• Photonics Research
  • Vol. 13, Issue 5, 1158 (2025)
Tianqing Zhou, Binggang Xiao, Yong Du, and Jianyuan Qin*
Author Affiliations
  • Centre for Terahertz Research, China Jiliang University, Hangzhou 310018, China
  • show less
    DOI: 10.1364/PRJ.544230 Cite this Article Set citation alerts
    Tianqing Zhou, Binggang Xiao, Yong Du, Jianyuan Qin, "QBIC-based terahertz metasurface used for the detection of chlorpyrifos in tea," Photonics Res. 13, 1158 (2025) Copy Citation Text show less
    References

    [1] X. Zhu, W. Li, R. Wu. Rapid detection of chlorpyrifos pesticide residue in tea using surface-enhanced Raman spectroscopy combined with chemometrics. Spectrochim. Acta A, 250, 119366(2021).

    [2] G. Berenstein, S. Nasello, É. Beiguel. Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina. Sci. Total Environ., 586, 1254-1262(2017).

    [3] Z. Li, W. Liu, C. Wu. Effect of spraying direction on the exposure to handlers with hand-pumped knapsack sprayer in maize field. Ecotoxicol. Environ. Saf., 170, 107-111(2019).

    [4] L. Wang, Z. Liu, J. Zhang. Chlorpyrifos exposure in farmers and urban adults: metabolic characteristic, exposure estimation, and potential effect of oxidative damage. Environ. Res., 149, 164-170(2016).

    [5] S. Muehlwald, N. Buchner, L. W. Kroh. Investigating the causes of low detectability of pesticides in fruits and vegetables analysed by high-performance liquid chromatography–time-of-flight. J. Chromatogr. A, 1542, 37-49(2018).

    [6] P. Liu, Y. Guo. Current situation of pesticide residues and their impact on exports in China. IOP Conf. Ser., 227, 052027(2019).

    [7] L. C. Cabrera, E. F., G. Di Piazza. The 2021 European Union report on pesticide residues in food. EFSA J, 21, 7939(2023).

    [8] M. R. Cvijović, V. Di Marco, S. J. Stanković. Atmospheric solids analysis probe with mass spectrometry for chlorpyrifos and chlorpyrifos-oxon determination in apples. Acta Chim. Slov., 66, 70-77(2019).

    [9] J. Tang, W. Chen, H. Ju. Rapid detection of pesticide residues using a silver nanoparticles coated glass bead as nonplanar substrate for SERS sensing. Sens. Actuators B Chem., 287, 576-583(2019).

    [10] W. Liu, W. Li, C. Liu. All-optical tuning of Fano resonance for quasi-BIC and terahertz sensing applications. Appl. Sci., 12, 4207(2022).

    [11] I. Amenabar, F. Lopez, A. Mendikute. In introductory review to THz non-destructive testing of composite mater. J. Infrared Millim. Terahertz Waves, 34, 152-169(2013).

    [12] M. Nagel, P. Haring Bolivar, M. Brucherseifer. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett., 80, 154-156(2002).

    [13] S. M. Kim, F. Hatami, J. S. Harris. Biomedical terahertz imaging with a quantum cascade laser. Appl. Phys. Lett., 88, 153903(2006).

    [14] J.-W. Dong, X.-D. Chen, H. Zhu. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [15] A. Karvounis, B. Gholipour, K. F. MacDonald. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett., 109, 051103(2016).

    [16] P. Moitra, B. A. Slovick, W. Li. Large-scale all-dielectric metamaterial perfect reflectors. ACS Photonics, 2, 692-698(2015).

    [17] R. Yahiaoui, K. Hanai, K. Takano. Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators. Opt. Lett., 40, 3197-3200(2015).

    [18] S. Yves, R. Fleury, T. Berthelot. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun., 8, 16023(2017).

    [19] G. Feng, Y. Dong, S. Liu. Numerical simulation of high Q based on merging bound states in the continuum for high-sensitivity terahertz refractive index sensing. Opt. Laser Eng., 180, 108336(2024).

    [20] J. Peng, X. Lin, X. Yan. Terahertz biosensor engineering based on quasi-BIC metasurface with ultrasensitive detection. Nanomaterials, 14, 799(2024).

    [21] M. Wang, X. Zhao, R. Zhao. Dual resonance based on quasi-bound states in continuum in the all-dielectric terahertz metasurface and its application in sensing. Results Phys., 49, 106518(2023).

    [22] S. Han, P. Pitchappa, W. Wang. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces. Adv. Opt. Mater., 9, 2002001(2021).

    [23] Y. K. Srivastava, R. T. Ako, M. Gupta. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett., 115, 151105(2019).

    [24] J. Ding, L. Huang, Y. Luo. Multi-band polarization-independent quasi-bound states in the continuum based on tetramer-based metasurfaces and their potential application in terahertz microfluidic biosensing. Adv. Opt. Mater., 11, 2300685(2023).

    [25] Z. Cui, Y. Wang, G. Sun. Coupling-based multiple bound states in the continuum and grating-assisted permittivity retrieval in the terahertz metasurface. ACS Appl. Mater. Interfaces, 16, 7631-7639(2024).

    [26] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836-842(2019).

    [27] Y. Plotnik, O. Peleg, F. Dreisow. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [28] Z. Qu, J. Kang, W. Li. Microstructure-based high-quality factor terahertz metamaterial bio-detection sensor. Adv. Compos. Hybrid Mater., 6, 100(2023).

    [29] G. Feng, Z. Chen, Y. Wang. Enhanced Fano resonance for high-sensitivity sensing based on bound states in the continuum. Chin. Opt. Lett., 21, 031202(2023).

    [30] J. Li, J. Li, C. Zheng. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon, 182, 506-515(2021).

    [31] X. He, F. Liu, F. Lin. Investigation of terahertz all-dielectric metamaterials. Opt. Express, 27, 13831-13844(2019).

    [32] X. Chen, W. Fan, H. Yan. Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing. Opt. Express, 28, 17102-17112(2020).

    [33] Y. Wang, Z. Han, Y. Du. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 10, 1295-1307(2021).

    [34] X. Chen, W. Fan, C. Song. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing. Carbon, 133, 416-422(2018).

    [35] J.-S. Li, Y.-Y. Xue, F.-L. Guo. Triple frequency bands terahertz metasurface sensor based on EIT and BIC effects. Opt. Commun., 554, 130225(2024).

    [36] X. Liu, F. Li, Y. Li. Terahertz metasurfaces based on bound states in the continuum (BIC) for high-sensitivity refractive index sensing. Optik, 261, 169248(2022).

    [37] S. Lin, X. Xu, F. Hu. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J. Sel. Top. Quantum Electron., 27, 6900207(2021).

    [38] Y. Li, X. Chen, F. Hu. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. J. Phys. D, 52, 095105(2019).

    [39] X. Xie, K. Liu, M. Pu. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation. Nanophotonics, 9, 3209-3215(2020).

    [40] X. Liu, G. Liu, J. Qin. Feasibility of using terahertz toroidal metasurface sensor for detection and quantification of chlorothalonil in water. IEEE Sens. J., 23, 30360-30367(2023).

    Tianqing Zhou, Binggang Xiao, Yong Du, Jianyuan Qin, "QBIC-based terahertz metasurface used for the detection of chlorpyrifos in tea," Photonics Res. 13, 1158 (2025)
    Download Citation