• Optical Instruments
  • Vol. 41, Issue 2, 80 (2019)
DU Yonghao1,2,*, CAO Shuhua1,2, WANG Qi1,2, and ZHANG Dawei1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1005-5630.2019.02.014 Cite this Article
    DU Yonghao, CAO Shuhua, WANG Qi, ZHANG Dawei. Progress in the development of metamaterial perfect absorber[J]. Optical Instruments, 2019, 41(2): 80 Copy Citation Text show less
    References

    [1] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

    [2] CUI Y X, HE Y R, JIN Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

    [3] LIU N, MESCH M, WEISS T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

    [4] MCCRINDLE I J H, GRANT J, DRYSDALE T D, et al. Multi-spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber[J]. Advanced Optical Materials, 2014, 2(2): 149-153.

    [5] LIANG Q Q, YU W X, ZHAO W C, et al. Numerical study of the meta-nanopyramid array as efficient solar energy absorber[J]. Optical Materials Express, 2013, 3(8): 1187-1196.

    [6] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

    [7] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111.

    [8] YE Q W, LIU Y, LIN H, et al. Multi-band metamaterial absorber made of multi-gap SRRs structure[J]. Applied Physics A, 2012, 107(1): 155-160.

    [9] LANDY N I, BINGHAM C M, TYLER T, et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12): 125104.

    [10] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Optics Express, 2008, 16(10): 7181-7188.

    [11] TAO H, BINGHAM C M, STRIKWERDA A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization[J]. Physical Review B, 2008, 78(24): 241103.

    [12] CHANG Y C, KILDISHEV A V, NARIMANOV E E, et al. Metasurface perfect absorber based on guided resonance of a photonic hypercrystal[J]. Physical Review B, 2016, 94(15): 155430.

    [13] TAO H, BINGHAM C M, PILON D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 2010, 43(22): 225102.

    [14] BAI Y, ZHAO L, JU D Q, et al. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial[J]. Optics Express, 2015, 23(7): 8670-8680.

    [15] ZHANG B Y, HENDRICKSON J, GUO J P. Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures[J]. Journal of the Optical Society of America B, 2013, 30(3): 656-662.

    [16] HU F R, WANG L, QUAN B G, et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 2013, 46(19): 195103.

    [17] LIU Z Q, LIU G Q, FU G L, et al. Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial[J]. Optics Express, 2016, 24(5): 5020-5025.

    [19] CUI Y X, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

    [20] WANG Z L, ZHANG Z M, QUAN X J, et al. Perfect absorption in the broad solar spectrum with Bi2Te3 hyperbolic metamaterials[C]//Advanced Photonics 2017. New Orleans, Louisiana, United States: OSA, 2017.

    [21] CHOWDHURY D R, SINGH R, O’HARA J F, et al. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor[J]. Applied Physics Letters, 2011, 99(23): 231101.

    [22] ZHU J, HAN J G, TIAN Z, et al. Thermal broadband tunable terahertz metamaterials[J]. Optics Communications, 2011, 284(12): 3129-3133.

    [23] DU K K, LI Q, ZHANG W C, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J]. IEEE Photonics Journal, 2015, 7(3): 6800908.

    [24] RAETHER H. Surface plasmons[M]//H.HLER G. Springer tracts in modern physics. Berlin: Springer, 1988.

    [25] GRANDE M, VINCENTI M A, STOMEO T, et al. Graphene-based perfect optical absorbers harnessing guided mode resonances[J]. Optics Express, 2015, 23(16): 21032-21042.

    [26] ZHANG S, WANG Y F, WANG S H, et al. Wavelength-tunable perfect absorber based on guided-mode resonances[J]. Applied Optics, 2016, 55(12): 3176-3181.

    [27] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.

    [28] GRANDE M, VINCENTI M A, STOMEO T, et al. Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings[J]. Optics Express, 2014, 22(25): 31511-31519.

    [29] WANG X, MA Q, WU L M, et al. Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus[J]. Optics Express, 2018, 26(5): 5488-5496.

    CLP Journals

    [1] ZHANG Minnan, LI Hong, MA Lipeng, WANG Shoushan, LI Bin. A terahertz metamaterial for band-stop filter[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(2): 185