[5] Fu Q, Chen Y, Sorieul M. Wood-Based Flexible Electronics. ACS Nano. 2020;14:3528–38.
[6] Zhou B, et al. Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control. Nanomicro Lett. 2023;15:72.
[9] Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater. 2016;15:937–50.
[11] Chortos A, Bao Z. Skin-inspired electronic devices. Mater Today. 2014;17:321–31.
[16] Kang SK, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71–6.
[20] Lu Y, et al. Multimodal Plant Healthcare Flexible Sensor System. ACS Nano. 2020;14:10966–75.
[27] Cao CF, et al. Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning. Nanomicro Lett. 2022;14:92.
[34] Cao W, et al. Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing. Nanomicro Lett. 2022;14:119.
[47] Xue M, Li F, Chen D, Yang Z, Wang X, Ji J. Gas Sensors: High-Oriented Polypyrrole Nanotubes for Next-Generation Gas Sensor Adv. Mater. 2016;28:8067–8067.
[51] Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev. 2019;48:1642–67.
[53] Liu X, Inda ME, Lai Y, Lu TK, Zhao X. Engineered Living Hydrogels. Adv Mater. 2022;34:2201326.
[54] Hu L, et al. Hydrogel-Based Flexible Electronics. Adv Mater. 2022;35:2205326.
[69] Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–92.