[1] A W LOHMANN, R G DORSCH, D MENDLOVIC et al. Space-bandwidth product of optical signals and systems. Journal of the Optical Society of America A, 13, 470-473(1996).
[2] 2王义强, 林方睿, 胡睿, 等. 大视场光学显微成像技术[J]. 中国光学,2022, 15(6): 1194-1210.WANGY Q, LINF R, HUR, et al. Large field-of-view optical microscopic imaging technology[J]. Chinese Optics,2022, 15(6): 1194-1210.(in Chinese)
[3] G A ZHENG, R HORSTMEYER, C YANG. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 7, 739-745(2013).
[4] G A ZHENG. Fourier Ptychographic Imaging: a MATLAB® Tutorial, 10-22(2016).
[5] S DONG, R HORSTMEYER, R SHIRADKAR et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Optics Express, 22, 13586-13599(2014).
[6] J HOLLOWAY, Y WU, M K SHARMA et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Sci Adv, 3(2017).
[7] J HOLLOWAY, M S ASIF, M K SHARMA et al. Toward long-distance subdiffraction imaging using coherent camera arrays. IEEE Transactions on Computational Imaging, 2, 251-265(2016).
[8] J R FIENUP. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. Journal of the Optical Society of America A, 4, 118-123(1987).
[9] J R FIENUP. Reconstruction of an object from the modulus of its Fourier transform. Optics Letters, 3, 27-29(1978).
[10] J R FIENUP. Lensless coherent imaging by phase retrieval with an illumination pattern constraint. Optics Express, 14, 498-508(2006).
[11] Y SHECHTMAN, Y C ELDAR, O COHEN et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Processing Magazine, 32, 87-109(2015).
[12] V MICO et al. Synthetic aperture microscopy using off-axis illumination and polarization coding. Optics Communications, 276, 209-217(2007).
[13] A E TIPPIE, A KUMAR, J R FIENUP. High-resolution synthetic-aperture digital holography with digital phase and pupil correction. Optics Express, 19, 12027-12038(2011).
[14] T GUTZLER, T R HILLMAN, S A ALEXANDROV et al. Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue. Optics Letters, 35, 1136-1138(2010).
[15] S A ALEXANDROV, T R HILLMAN, T GUTZLER et al. Synthetic aperture Fourier holographic optical microscopy. Physical Review Letters, 97, 168102(2006).
[16] L GRANERO, V MICÓ, Z ZALEVSKY et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information. Applied Optics, 49, 845-857(2010).
[17] A M MAIDEN et al. An annealing algorithm to correct positioning errors in ptychography. Ultramicroscopy, 120, 64-72(2012).
[18] L H YEH, J DONG, J ZHONG et al. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt Express, 23, 33214-33240(2015).
[19] J SUN, Q CHEN, Y ZHANG et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy. Biomedical Optics Express, 7, 1336-1350(2016).
[20] J LIU, Y LI, W B WANG et al. Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy. Optics Express, 25, 28053-28067(2017).
[21] R ECKERT, Z F PHILLIPS, L WALLER. Efficient illumination angle self-calibration in Fourier ptychography. Applied Optics, 57, 5434-5442(2018).
[22] 22毛海锋, 赵巨峰, 崔光茫, 等. 基于傅里叶叠层显微成像的LED阵列位置校正方法[J]. 光学学报, 2021, 41(4): 103-113. doi: 10.3788/aos202141.0411002MAOH F, ZHAOJ F, CUIG M, et al. LED array position correction method based on Fourier ptychographic microscopy[J]. Acta Optica Sinica, 2021, 41(4): 103-113.(in Chinese). doi: 10.3788/aos202141.0411002
[23] 23景海钊, 史江林, 邱梦哲, 等. 基于密集残差块生成对抗网络的空间目标图像超分辨率重建[J]. 光学 精密工程, 2022, 30(17): 2155-2165. doi: 10.37188/OPE.20223017.2155JINGH ZH, SHIJ L, QIUM ZH, et al. Super-resolution reconstruction method for space target images based on dense residual block-based GAN[J]. Opt. Precision Eng., 2022, 30(17): 2155-2165.(in Chinese). doi: 10.37188/OPE.20223017.2155
[24] 24王杰, 徐国明, 马健, 等. 轻量级注意力级联网络的偏振计算成像超分辨率重建[J]. 光学 精密工程, 2022, 30(19): 2404-2419.WANGJ, XUG M, MAJ, et al. Polarization computational imaging super-resolution reconstruction with lightweight attention cascading network[J]. Opt. Precision Eng., 2022, 30(19): 2404-2419.(in Chinese)
[25] 25耿铭昆, 吴凡路, 王栋. 轻量化火星遥感影像超分辨率重建网络[J]. 光学 精密工程, 2022, 30(12): 1487-1498. doi: 10.37188/OPE.20223012.1487GENGM K, WUF L, WANGD. Lightweight Mars remote sensing image super-resolution reconstruction network[J]. Opt. Precision Eng., 2022, 30(12): 1487-1498.(in Chinese). doi: 10.37188/OPE.20223012.1487
[26] 26吴笑天, 杨航, 孙兴龙. 基于区域选择网络的图像复原及其在计算成像中的应用[J]. 光学 精密工程, 2021, 29(4): 864-876. doi: 10.37188/OPE.20212904.0864WUX T, YANGH, SUNX L. Image restoring method based on region selection network and its application in computational imaging[J]. Opt. Precision Eng., 2021, 29(4): 864-876.(in Chinese). doi: 10.37188/OPE.20212904.0864
[27] M ZHAO, X H ZHANG, Z M TIAN et al. Neural network model with positional deviation correction for Fourier ptychography. Journal of the Society for Information Display, 29, 749-757(2021).
[28] J S SUN, Q CHEN, Y Z ZHANG et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Optics Express, 24, 15765-15781(2016).
[29] J C WU, F YANG, L CAO et al. Resolution enhancement of long-range imaging with sparse apertures. Optics and Lasers in Engineering, 155, 107068(2022).