• Journal of Advanced Dielectrics
  • Vol. 12, Issue 3, 2250005 (2022)
Jingjing Rao1,2, Zhen Fan1,2,*, Qicheng Huang1, Yongjian Luo1..., Xingmin Zhang3, Haizhong Guo4, Xiaobing Yan5, Guo Tian1, Deyang Chen1, Zhipeng Hou1, Minghui Qin1, Min Zeng1, Xubing Lu1, Guofu Zhou1,2, Xingsen Gao1 and Jun-Ming Liu6|Show fewer author(s)
Author Affiliations
  • 1Institute for Advanced Materials, South China Normal University, Guangzhou 510006, P. R. China
  • 2Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Normal University, Guangzhou 510006, P. R. China
  • 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
  • 4School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, P. R. China
  • 5Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding 071002, P. R. China
  • 6Laboratory of Solid State Microstructures and Innovation Center of Advanced, Nanjing 210093, P. R. China
  • show less
    DOI: 10.1142/S2010135X22500059 Cite this Article
    Jingjing Rao, Zhen Fan, Qicheng Huang, Yongjian Luo, Xingmin Zhang, Haizhong Guo, Xiaobing Yan, Guo Tian, Deyang Chen, Zhipeng Hou, Minghui Qin, Min Zeng, Xubing Lu, Guofu Zhou, Xingsen Gao, Jun-Ming Liu. Experimental search for high-performance ferroelectric tunnel junctions guided by machine learning[J]. Journal of Advanced Dielectrics, 2022, 12(3): 2250005 Copy Citation Text show less
    References

    [1] Y. Yang, M. Wu, X. Li, H. Hu, Z. Jiang, Z. Li, X. Hao, C. Zheng, X. Lou, S. J. Pennycook, Z. Wen. The role of ferroelectric polarization in resistive memory properties of metal/insulator/semiconductor tunnel junctions: A comparative study. CS Appl. Mater. Interfaces, 12, 32935(2020).

    [2] H. J. Mao, C. Song, L. R. Xiao, S. Gao, B. Cui, J. J. Peng, F. Lib, F. Pan. Unconventional resistive switching behavior in ferroelectric tunnel junctions. Phys. Chem. Chem. Phys., 17, 10146(2015).

    [3] R. Berdan, T. Marukame, K. Ota, M. Yamaguchi, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi. Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat. Electron., 3, 259(2020).

    [4] A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, A. Barthelemy. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol., 7, 101(2012).

    [5] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carretero, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A. Barthelemy, S. Saighi, V. Garcia. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun., 8, 14736(2017).

    [6] R. Guo, W. Lin, X. Yan, T. Venkatesan, J. Chen. Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev., 7, 011304(2020).

    [7] P. Hou, J. Wang, X. Zhong. Investigation of multilevel data storage in silicon-based polycrystalline ferroelectric tunnel junction. Sci. Rep., 7, 4525(2017).

    [8] Z. Wen, C. Li, D. Wu, A. Li, N. Ming. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater., 12, 617(2013).

    [9] A. Sokolov, O. Bak, H. Lu, S. Li, E. Y. Tsymbal, A. Gruverman. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions. Nanotechnology, 26, 305202(2015).

    [10] R. Guo, Y. Zhou, L. Wu, Z. Wang, Z. Lim, X. Yan, W. Lin, H. Wang, H. Y. Yoong, S. Chen, Ariando , T. Venkatesan, J. Wang, G. M. Chow, A. Gruverman, X. Miao, Y. Zhu, J. Chen. Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering. ACS Appl. Mater. Interface, 10, 12862(2018).

    [11] C. Li, L. Huang, T. Li, W. Lu, X. Qiu, Z. Huang, Z. Liu, S. Zeng, R. Guo, Y. Zhao, K. Zeng, M. Coey, J. Chen, Ariando , T. Venkatesan. Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano. Lett., 15, 2568(2015).

    [12] W. Lu, C. Li, L. Zheng, J. Xiao, W. Lin, Q. Li, X. R. Wang, Z. Huang, S. Zeng, K. Han, W. Zhou, K. Zeng, J. Chen, Ariando , W. Cao, T. Venkatesan. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration. Adv. Mater., 29, 1606165(2017).

    [13] X. Wang, M. Wu, F. Wei, Y. Zhang, C. Zheng, X. Lou, S. J. Pennycook, Z. Wen. Electroresistance of Pt/BaTiO3/LaNiO3 ferroelectric tunnel junctions and its dependence on BaTiO3 thickness. Mater. Res. Exp., 6, 046307(2019).

    [14] L. Wang, M. R. Cho, Y. J. Shin, J. R. Kim, S. Das, J.-G. Yoon, J.-S. Chung, T. W. Noh. Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett., 16, 3911(2016).

    [15] J. Li, N. Li, C. Ge, H. Huang, Y. Sun, P. Gao, M. He, C. Wang, G. Yang, K. Jin. Giant electroresistance in ferroionic tunnel junctions. iScience, 16, 368(2019).

    [16] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 306, 1005(2004).

    [17] R. Soni, A. Petraru, P. Meuffels, O. Vavra, M. Ziegler, S. K. Kim, D. S. Jeong, N. A. Pertsev, H. Kohlstedt. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat. Commun., 5, 5414(2014).

    [18] D. Pantel, M. Alexe. Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B, 82, 134105(2010).

    [19] Y. Goh, S. Jeon. The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2. Nanotechnology, 29, 335201(2018).

    [20] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, M. Bibes. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 460, 81(2009).

    [21] S. Boyn, A. M. Douglas, C. Blouzon, P. Turner, A. Barthélémy, M. Bibes, S. Fusil, J. M. Gregg, V. Garcia. Tunnel electroresistance in BiFeO3 junctions: Size does matter. Appl. Phys. Lett., 109, 232902(2016).

    [22] K.M. Niang, G. Bai, H. Lu, J. Robertson. Microstructure scaling in metal-insulator-transitions of atomic layer deposited VO2 films. Solid State Electron., 183, 108046(2021).

    [23] P. Hou, J. Wang, X. Zhong, Y. Wu. A ferroelectric memristor based on the migration of oxygen vacancies. RSC Adv., 6, 54113(2016).

    [24] S. Zhang, L. Zhang, L. Wang, F. Wang, G. Pan. A flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. C, 7, 4760(2019).

    [25] F. E. Bock, R. C. Aydin, C. J. Cyron, N. Huber, S. R. Kalidindi, B. Klusemann. A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front. Mater., 6, 110(2019).

    [26] P. V. Balachandran, B. Kowalski, A. Sehirlioglu, T. Lookman. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat. Commun., 9, 1668(2018).

    [27] R. Yuan, Z. Liu, P. V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv. Mater., 30, 1702884(2018).

    [28] W. Sun, Y. Zheng, K. Yang, Q. Zhang, A. A. Shah, Z. Wu, Y. Sun, L. Feng, D. Chen, Z. Xiao, S. Lu, Y. Li, K. Sun. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Sci. Adv., 5, 11(2019).

    [29] X. Yang, J. Xi, Y. Sun, Y. Zhang, G. Zhou, W.-Y. Wong. A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy, 64, 103946(2019).

    [30] C. She, Q. Huang, C. Chen, Y. Jiang, Z. Fan, J. Gao. Machine learning-guided search for high-efficiency perovskite solar cells with doped electron transport layers. J. Mater. Chem. A, 9, 25168(2021).

    [31] Z. Xi, J. Ruan, C. Li, C. Zheng, Z. Wen, J. Dai, A. Li, D. Wu. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat. Commun., 8, 15217(2017).

    [32] F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, R. Nouar, A. Sarkissian, C. Gomez-Yáñez, M. A. Gauthier, A. Ruediger. Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure. Appl. Phys. Lett., 110, 093106(2017).

    [33] H. Y. Yoong, H. Wang, J. Xiao, R. Guo, P. Yang, Y. Yang, S. T. Lim, J. Wang, T. Venkatesan, J. Chen. Tunneling electroresistance effect in ultrathin BiFeO3-based ferroelectric tunneling junctions. Appl. Phys. Lett., 109, 242901(2016).

    [34] C. L. Li, Z. H. Chen, Y. L. Zhou, D. F. Cui. Effect of oxygen content on the dielectric and ferroelectric properties of laser-deposited BaTiO3 thin films. J. Phys. Condens. Matter., 13, 5261(2001).

    [35] Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma, Y. Yang, R. Huang, W. Wei, Y. Zheng, T. Gong, J. Yu, X. Xu, P. Yuan, X. Li, L. Tai, H. Yu, D. Shang, Q. Liu, B. Yu, Q. Ren, H. Lv, M. Liu. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun., 11, 1(2020).

    [36] J. Zhu, W. B. Luo, Y. R. Li. Growth and properties of BiFeO3 thin films deposited on LaNiO3-buffered SrTiO3 (0 0 1) and (1 1 1) substrates by PLD. Appl. Surf. Sci., 255, 3466(2008).

    [37] C. Yoon, J. H. Lee, S. Lee, J. H. Jeon, J. T. Jang, D. H. Kim, Y. H. Kim, B. H. Park. Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction. Nano. Lett., 17, 1949(2017).

    [38] F. Y. Bruno, S. Boyn, S. Fusil, S. Girod, C. Carrétéro, M. Marinova, A. Gloter, S. Xavier, C. Deranlot, M. Bibes, A. Barthélémy, V. Garcia. Millionfold resistance change in ferroelectric tunnel junctions based on nickelate electrodes. Adv. Electron. Mater., 2, 1500245(2016).

    [39] M. Sokolova, G. Lapalme. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag., 45, 427(2009).

    [40] J. P. Velev, J. D. Burton, M. Y. Zhuravlev, E. Y. Tsymbal. Predictive modelling of ferroelectric tunnel junctions. npj Comput. Mater., 2, 1(2016).

    [41] A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Ye. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, E. Y. Tsymbal. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett., 9, 3539(2009).

    [42] H. K. Yoo, Y. J. Chang, L. Moreschini, H.-D. Kim, C. H. Sohn, S. Sinn, J. S. Oh, C.-T. Kuo, A. Bostwick, E. Rotenberg, T. W. Noh. Insulating-layer formation of metallic LaNiO3 on Nb-doped SrTiO3 substrate. Appl. Phys. Lett., 106, 121601(2015).

    [43] H. Yamada, M. Marinova, P. Altuntas, A. Crassous, L. Begon-Lours, S. Fusil, E. Jacquet, V. Garcia, K. Bouzehouane, A. Gloter, J. E. Villegas, A. Barthelemy, M. Bibes. Ferroelectric control of a Mott insulator. Sci. Rep., 3, 2834(2013).

    [44] S. Zhang. Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys. Rev. Lett., 83, 640(1999).

    [45] D. J. Kim, H. Lu, S. Ryu, C.-W. Bark, C. B. Eom, E. Y. Tsymbal, A. Gruverman. Ferroelectric tunnel memristor. Nano Lett., 12, 5697(2012).

    [46] Ji. Wu, H.-Y. Chen, N. Yang, J. Cao, X. Yan, F. Liu, Q. Sun, X. Ling, J. Guo, H. Wang. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron., 3, 466(2020).

    [47] M. J. Calderón, E. Bascones. Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny. npj Quantum Mater., 5, 57(2020).

    [48] Y. Matsubara, K. S. Takahashi, Y. Tokura, M. Kawasaki. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy. Appl. Phys. Exp., 7, 125502(2014).

    [49] J. A. Cortés, J. Camargo, M. F. Rachia, F. Rubio-Marcos, L. Ramajo, M. Castro, M. A. Ramírez. Influence of the sintering temperature on ferroelectric properties of potassium-sodium niobate piezoelectric ceramics. J. Adv. Dielectr., 11, 2140002(2021).

    [50] D. Lee, B. Chul Jeon, A. Yoon, Y. Jae Shin, M. H. Lee, T. K. Song, S. D. Bu, M. Kim, J. Chung, J.-G. Yoon, T. W. Noh. Flexoelectric control of defect formation in ferroelectric epitaxial thin films. Adv. Mater., 26, 5005(2014).

    [51] Q. Huang, Z. Fan, J. Rao, T. Yang, X. Zhang, D. Chen, M. Qin, M. Zeng, X. Lu, G. Zhou, X. Gao, J.-M. Liu. Significant modulation of ferroelectric photovoltaic behavior by a giant macroscopic flexoelectric effect induced by strain-relaxed epitaxy. Adv. Electron. Mater., 8, 2100612(2022).

    [52] F. Zhang, Q. Miao, G. Tian, Z. Lu, L. Zhao, H. Fan, X. Song, Z. Li, M. Zeng, X. Gao, J. Liu. Unique nano-domain structures in self-assembled BiFeO3 and Pb(Zr, Ti)O3 ferroelectric nanocapacitors. Nanotechnology, 27, 015703(2015).

    [53] W. Peng, J. Mun, Q. Xie, J. Chen, L. Wang, M. Kim, T. W. Noh. Oxygen vacancy-induced topological nanodomains in ultrathin ferroelectric films. npj Quantum Mater., 6, 48(2021).

    [54] Y. Chu, Q. He, C. Yang, P. Yu, L. W. Martin, P. Shafer, R. Ramesh. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett., 9, 1726(2009).

    Jingjing Rao, Zhen Fan, Qicheng Huang, Yongjian Luo, Xingmin Zhang, Haizhong Guo, Xiaobing Yan, Guo Tian, Deyang Chen, Zhipeng Hou, Minghui Qin, Min Zeng, Xubing Lu, Guofu Zhou, Xingsen Gao, Jun-Ming Liu. Experimental search for high-performance ferroelectric tunnel junctions guided by machine learning[J]. Journal of Advanced Dielectrics, 2022, 12(3): 2250005
    Download Citation