[1] Y. Yang, M. Wu, X. Li, H. Hu, Z. Jiang, Z. Li, X. Hao, C. Zheng, X. Lou, S. J. Pennycook, Z. Wen. The role of ferroelectric polarization in resistive memory properties of metal/insulator/semiconductor tunnel junctions: A comparative study. CS Appl. Mater. Interfaces, 12, 32935(2020).
[2] H. J. Mao, C. Song, L. R. Xiao, S. Gao, B. Cui, J. J. Peng, F. Lib, F. Pan. Unconventional resistive switching behavior in ferroelectric tunnel junctions. Phys. Chem. Chem. Phys., 17, 10146(2015).
[3] R. Berdan, T. Marukame, K. Ota, M. Yamaguchi, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi. Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat. Electron., 3, 259(2020).
[4] A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, A. Barthelemy. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol., 7, 101(2012).
[5] S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carretero, K. Garcia, S. Xavier, J. Tomas, L. Bellaiche, M. Bibes, A. Barthelemy, S. Saighi, V. Garcia. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun., 8, 14736(2017).
[6] R. Guo, W. Lin, X. Yan, T. Venkatesan, J. Chen. Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev., 7, 011304(2020).
[7] P. Hou, J. Wang, X. Zhong. Investigation of multilevel data storage in silicon-based polycrystalline ferroelectric tunnel junction. Sci. Rep., 7, 4525(2017).
[8] Z. Wen, C. Li, D. Wu, A. Li, N. Ming. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater., 12, 617(2013).
[9] A. Sokolov, O. Bak, H. Lu, S. Li, E. Y. Tsymbal, A. Gruverman. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions. Nanotechnology, 26, 305202(2015).
[10] R. Guo, Y. Zhou, L. Wu, Z. Wang, Z. Lim, X. Yan, W. Lin, H. Wang, H. Y. Yoong, S. Chen, Ariando , T. Venkatesan, J. Wang, G. M. Chow, A. Gruverman, X. Miao, Y. Zhu, J. Chen. Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering. ACS Appl. Mater. Interface, 10, 12862(2018).
[11] C. Li, L. Huang, T. Li, W. Lu, X. Qiu, Z. Huang, Z. Liu, S. Zeng, R. Guo, Y. Zhao, K. Zeng, M. Coey, J. Chen, Ariando , T. Venkatesan. Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano. Lett., 15, 2568(2015).
[12] W. Lu, C. Li, L. Zheng, J. Xiao, W. Lin, Q. Li, X. R. Wang, Z. Huang, S. Zeng, K. Han, W. Zhou, K. Zeng, J. Chen, Ariando , W. Cao, T. Venkatesan. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration. Adv. Mater., 29, 1606165(2017).
[13] X. Wang, M. Wu, F. Wei, Y. Zhang, C. Zheng, X. Lou, S. J. Pennycook, Z. Wen. Electroresistance of Pt/BaTiO3/LaNiO3 ferroelectric tunnel junctions and its dependence on BaTiO3 thickness. Mater. Res. Exp., 6, 046307(2019).
[14] L. Wang, M. R. Cho, Y. J. Shin, J. R. Kim, S. Das, J.-G. Yoon, J.-S. Chung, T. W. Noh. Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett., 16, 3911(2016).
[15] J. Li, N. Li, C. Ge, H. Huang, Y. Sun, P. Gao, M. He, C. Wang, G. Yang, K. Jin. Giant electroresistance in ferroionic tunnel junctions. iScience, 16, 368(2019).
[16] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 306, 1005(2004).
[17] R. Soni, A. Petraru, P. Meuffels, O. Vavra, M. Ziegler, S. K. Kim, D. S. Jeong, N. A. Pertsev, H. Kohlstedt. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat. Commun., 5, 5414(2014).
[18] D. Pantel, M. Alexe. Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B, 82, 134105(2010).
[19] Y. Goh, S. Jeon. The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2. Nanotechnology, 29, 335201(2018).
[20] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, M. Bibes. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 460, 81(2009).
[21] S. Boyn, A. M. Douglas, C. Blouzon, P. Turner, A. Barthélémy, M. Bibes, S. Fusil, J. M. Gregg, V. Garcia. Tunnel electroresistance in BiFeO3 junctions: Size does matter. Appl. Phys. Lett., 109, 232902(2016).
[22] K.M. Niang, G. Bai, H. Lu, J. Robertson. Microstructure scaling in metal-insulator-transitions of atomic layer deposited VO2 films. Solid State Electron., 183, 108046(2021).
[23] P. Hou, J. Wang, X. Zhong, Y. Wu. A ferroelectric memristor based on the migration of oxygen vacancies. RSC Adv., 6, 54113(2016).
[24] S. Zhang, L. Zhang, L. Wang, F. Wang, G. Pan. A flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. C, 7, 4760(2019).
[25] F. E. Bock, R. C. Aydin, C. J. Cyron, N. Huber, S. R. Kalidindi, B. Klusemann. A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front. Mater., 6, 110(2019).
[26] P. V. Balachandran, B. Kowalski, A. Sehirlioglu, T. Lookman. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat. Commun., 9, 1668(2018).
[27] R. Yuan, Z. Liu, P. V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv. Mater., 30, 1702884(2018).
[28] W. Sun, Y. Zheng, K. Yang, Q. Zhang, A. A. Shah, Z. Wu, Y. Sun, L. Feng, D. Chen, Z. Xiao, S. Lu, Y. Li, K. Sun. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Sci. Adv., 5, 11(2019).
[29] X. Yang, J. Xi, Y. Sun, Y. Zhang, G. Zhou, W.-Y. Wong. A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy, 64, 103946(2019).
[30] C. She, Q. Huang, C. Chen, Y. Jiang, Z. Fan, J. Gao. Machine learning-guided search for high-efficiency perovskite solar cells with doped electron transport layers. J. Mater. Chem. A, 9, 25168(2021).
[31] Z. Xi, J. Ruan, C. Li, C. Zheng, Z. Wen, J. Dai, A. Li, D. Wu. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat. Commun., 8, 15217(2017).
[32] F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, R. Nouar, A. Sarkissian, C. Gomez-Yáñez, M. A. Gauthier, A. Ruediger. Tunneling electroresistance effect in a Pt/Hf0.5Zr0.5O2/Pt structure. Appl. Phys. Lett., 110, 093106(2017).
[33] H. Y. Yoong, H. Wang, J. Xiao, R. Guo, P. Yang, Y. Yang, S. T. Lim, J. Wang, T. Venkatesan, J. Chen. Tunneling electroresistance effect in ultrathin BiFeO3-based ferroelectric tunneling junctions. Appl. Phys. Lett., 109, 242901(2016).
[34] C. L. Li, Z. H. Chen, Y. L. Zhou, D. F. Cui. Effect of oxygen content on the dielectric and ferroelectric properties of laser-deposited BaTiO3 thin films. J. Phys. Condens. Matter., 13, 5261(2001).
[35] Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma, Y. Yang, R. Huang, W. Wei, Y. Zheng, T. Gong, J. Yu, X. Xu, P. Yuan, X. Li, L. Tai, H. Yu, D. Shang, Q. Liu, B. Yu, Q. Ren, H. Lv, M. Liu. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun., 11, 1(2020).
[36] J. Zhu, W. B. Luo, Y. R. Li. Growth and properties of BiFeO3 thin films deposited on LaNiO3-buffered SrTiO3 (0 0 1) and (1 1 1) substrates by PLD. Appl. Surf. Sci., 255, 3466(2008).
[37] C. Yoon, J. H. Lee, S. Lee, J. H. Jeon, J. T. Jang, D. H. Kim, Y. H. Kim, B. H. Park. Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction. Nano. Lett., 17, 1949(2017).
[38] F. Y. Bruno, S. Boyn, S. Fusil, S. Girod, C. Carrétéro, M. Marinova, A. Gloter, S. Xavier, C. Deranlot, M. Bibes, A. Barthélémy, V. Garcia. Millionfold resistance change in ferroelectric tunnel junctions based on nickelate electrodes. Adv. Electron. Mater., 2, 1500245(2016).
[39] M. Sokolova, G. Lapalme. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag., 45, 427(2009).
[40] J. P. Velev, J. D. Burton, M. Y. Zhuravlev, E. Y. Tsymbal. Predictive modelling of ferroelectric tunnel junctions. npj Comput. Mater., 2, 1(2016).
[41] A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang, C. M. Folkman, M. Ye. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, E. Y. Tsymbal. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett., 9, 3539(2009).
[42] H. K. Yoo, Y. J. Chang, L. Moreschini, H.-D. Kim, C. H. Sohn, S. Sinn, J. S. Oh, C.-T. Kuo, A. Bostwick, E. Rotenberg, T. W. Noh. Insulating-layer formation of metallic LaNiO3 on Nb-doped SrTiO3 substrate. Appl. Phys. Lett., 106, 121601(2015).
[43] H. Yamada, M. Marinova, P. Altuntas, A. Crassous, L. Begon-Lours, S. Fusil, E. Jacquet, V. Garcia, K. Bouzehouane, A. Gloter, J. E. Villegas, A. Barthelemy, M. Bibes. Ferroelectric control of a Mott insulator. Sci. Rep., 3, 2834(2013).
[44] S. Zhang. Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys. Rev. Lett., 83, 640(1999).
[45] D. J. Kim, H. Lu, S. Ryu, C.-W. Bark, C. B. Eom, E. Y. Tsymbal, A. Gruverman. Ferroelectric tunnel memristor. Nano Lett., 12, 5697(2012).
[46] Ji. Wu, H.-Y. Chen, N. Yang, J. Cao, X. Yan, F. Liu, Q. Sun, X. Ling, J. Guo, H. Wang. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron., 3, 466(2020).
[47] M. J. Calderón, E. Bascones. Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny. npj Quantum Mater., 5, 57(2020).
[48] Y. Matsubara, K. S. Takahashi, Y. Tokura, M. Kawasaki. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy. Appl. Phys. Exp., 7, 125502(2014).
[49] J. A. Cortés, J. Camargo, M. F. Rachia, F. Rubio-Marcos, L. Ramajo, M. Castro, M. A. Ramírez. Influence of the sintering temperature on ferroelectric properties of potassium-sodium niobate piezoelectric ceramics. J. Adv. Dielectr., 11, 2140002(2021).
[50] D. Lee, B. Chul Jeon, A. Yoon, Y. Jae Shin, M. H. Lee, T. K. Song, S. D. Bu, M. Kim, J. Chung, J.-G. Yoon, T. W. Noh. Flexoelectric control of defect formation in ferroelectric epitaxial thin films. Adv. Mater., 26, 5005(2014).
[51] Q. Huang, Z. Fan, J. Rao, T. Yang, X. Zhang, D. Chen, M. Qin, M. Zeng, X. Lu, G. Zhou, X. Gao, J.-M. Liu. Significant modulation of ferroelectric photovoltaic behavior by a giant macroscopic flexoelectric effect induced by strain-relaxed epitaxy. Adv. Electron. Mater., 8, 2100612(2022).
[52] F. Zhang, Q. Miao, G. Tian, Z. Lu, L. Zhao, H. Fan, X. Song, Z. Li, M. Zeng, X. Gao, J. Liu. Unique nano-domain structures in self-assembled BiFeO3 and Pb(Zr, Ti)O3 ferroelectric nanocapacitors. Nanotechnology, 27, 015703(2015).
[53] W. Peng, J. Mun, Q. Xie, J. Chen, L. Wang, M. Kim, T. W. Noh. Oxygen vacancy-induced topological nanodomains in ultrathin ferroelectric films. npj Quantum Mater., 6, 48(2021).
[54] Y. Chu, Q. He, C. Yang, P. Yu, L. W. Martin, P. Shafer, R. Ramesh. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett., 9, 1726(2009).